Lip-reading is the task of inferring the speaker's utterance from silent video based on learning of lip movements. It is very challenging due to the inherent ambiguities present in the lip movement such as different characters that produce the same lip appearances. Recent advances in deep learning models such as Transformer and Temporal Convolutional Network have led to improve the performance of lip-reading. However, most previous works deal with English lip-reading which has limitations in directly applying to Korean lip-reading, and moreover, there is no a large scale Korean lip-reading dataset. In this paper, we introduce the first large-scale Korean lip-reading dataset with more than 120 k utterances collected from TV broadcasts containing news, documentary and drama. We also present a preprocessing method which uniformly extracts a facial region of interest and propose a transformer-based model based on grapheme unit for sentence-level Korean lip-reading. We demonstrate that our dataset and model are appropriate for Korean lip-reading through statistics of the dataset and experimental results.
Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods through lip reading experiments.
Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods with lip reading experiments. Also, a measure of lip parameter degradation is proposed. This measure can be used in the determination of weighting values of video information.
최근 립리딩에 대한 연구는 음성인식방법에 있어서 부가적인 정보를 제공하여 잡음환경에서 견인한 음성 인식을 하거나 음성정보의 부가적인 특징벡터로 사용하기 위한 방법으로 연구되고 있다. 그러나 립리딩 연구의 대부분은 실험실 환경하의 제한된 결과로서, 실제 다양한 동적 환경에서의 견인성에 대해서는 연구된 바가 없다. 현재 우리는 입술정보만을 이용한 자동22단어 인식기를 만들었으며, 이미지 기반 립리딩의 성능은 53.54%의 성능을 가지고 있다. 본 연구에서는 기 구현된 립리딩 시스템을 기반으로 하여, 립리딩 성능이 환경 적인 변화에 대해서 얼마나 안정할 수 있는지, 그리고 립리딩의 인식성능 저하를 일으키는 주요 요인이 무엇인지에 대하여 연구하였다. 입술이미지의 동적 변이로서는 이동, 회전. 크기변화와 같은 공간적 변화와 빛에 의한 조명변화를 고려하였다. 실험용 데이터로는 영상변환에 의한 시뮬레이션 된 데이터와 동적 변화가 심한 자동차 환경에서 수집한 데이터를 사용하였다. 실험결과 입술의 공간 변화가 인식성능 저하의 한가지 요인으로 작용함을 발견하였다. 그러나 실제적으로 공간변화보다 더 심각한 성능저하 원인은 시간흐름에 따른 조명조건의 변화로써 70%이상의 왜곡이 발생했다. 따라서 신뢰할 수 있는 립리딩 시스템 구현을 위해서 고려해야 할 가장 큰 요인은 빛의 변화임을 발견할 수 있었다.
소음환경에서의 음성인식 문제점으로 인해 1990년대 중반부터 음성정보와 영양정보를 결합한 AVSR(Audio Visual Speech Recognition) 시스템이 제안되었고, Lip Reading은 AVSR 시스템에서 시각적 특징으로 사용되었다. 본 연구는 효율적인 AVSR 시스템을 구축하기 위해 입 모양만을 이용한 발화 단어 인식률을 극대화하는데 목적이 있다. 본 연구에서는 입 모양 인식을 위해 실험단어를 발화한 입력 영상으로부터 영상의 전처리 과정을 수행하고 입술 영역을 검출한다. 이후 DNN(Deep Neural Network)의 일종인 CNN(Convolution Neural Network)을 이용하여 발화구간을 검출하고, 동일한 네트워크를 사용하여 입 모양 특징 벡터를 추출하여 HMM(Hidden Markov Mode)으로 인식 실험을 진행하였다. 그 결과 발화구간 검출 결과는 91%의 인식률을 보임으로써 Threshold를 이용한 방법에 비해 높은 성능을 나타냈다. 또한 입모양 인식 실험에서 화자종속 실험은 88.5%, 화자 독립 실험은 80.2%로 이전 연구들에 비해 높은 결과를 보였다.
본 논문은 임베디드 환경에서의 실시간 립리딩 방법을 제안한다. 기존 PC 환경에 비하여 임베디드 환경은 사용할 수 있는 자원이 제한적이므로, 기존 PC 환경의 립리딩 시스템을 임베디드 환경에서 실시간으로 구동하기는 어렵다. 이러한 문제를 해결하기 위해 본 논문은 임베디드 환경에 적합한 입술영역 검출 방법과 입술 특징추출 방법, 그리고 발성 단어 인식 방법을 제안한다. 먼저 정확한 입술영역을 찾기 위해 얼굴 색상정보를 이용해 얼굴영역을 검출하고 검출된 얼굴 영역에서 양쪽 두 눈의 위치를 찾아 기하학적 관계를 이용해 정확한 입술영역을 검출한다. 검출된 입술영역에서 주위 환경 변화에 따른 조명 변화에 강인한 특징을 추출하기위해 히스토그램 매칭과 입술 폴딩, RASTA 필터를 적용하고 주성분 분석(PCA)을 이용한 특징계수를 추출해 인식에 사용하였다. 실험결과 CPU 806Mhz, RAM 128MB 사양의 임베디드 환경에서 발성 단어에 따라 1.15초에서 2.35초까지의 처리 속도를 보였으며, 180개의 단어 중 139개의 단어를 인식해 77%의 인식률을 얻을 수 있었다.
현재 음성인식 분야에서는 잡음이 심한 환경에서 음성 인식률을 향상시킬 수 있는 바이모달의 한 형태인 립리딩 기술에 관한 연구가 활발히 진행되고 있다. 립리딩 연구에 있어서 가장 중요한 것은 정확한 입술 이미지를 찾아내는 것이다. 그러나 조명변화, 화자의 발음습관, 입술 모양의 다양성, 입술의 회전과 크기 변화 등의 환경 변화 요인 때문에 안정적인 성능을 예측하기가 힘든 실정이다. 본 논문에서는 보다 안정적 성능을 얻기 위해 시간영역에서 이미지를 임펄스 응답 필터링을 수행을 통해 향상된 인식성능을 보였다. 또한 본 연구에서는 입술 전체 영상을 대상으로 처리하는 립리딩 기법의 사용으로 인해 발생하는 데이터 용량 증가를 고려해 영상의 정보는 손실하지 않고 그 특징만을 추출하여 데이터의 양을 줄일 수 있는 주성분 분석을 전처리 과정으로 사용하였다. 본 연구에서는 영상정보만을 사용하여 음성인식 성능 관찰을 위해 자동차 내에서 서비스가 가능한 22단어를 선정하여 인식실험을 하였다. 이 단어들의 인식 성능을 비교하기 위하여 음성 인식 알고리듬으로 잘 알려진 HMM(Hidden Markov Model)을 이용하였다. 실험결과 PCA(Principal component Analysis)하였던 경우 립리딩이 64%의 인식률을 보인 반면, 시간영역필터를 립리딩에 적용시 72.7%로 인식률의 향상을 보였다.
Lip reading is a field of image processing to assist the process of sound recognition. In some environment, the capture of sound signal usually has significant noise and therefore, the recognition rate of sound signal decreases. Lip reading can be a good feature for the increase of recognition rates. Conventional lip extraction methods have been proposed widely. Maia et. al. proposed a method by the sum of Cr and Cb. However, there are two problems as follows: the point with maximum saturation is not always regarded as lips region and the inner part of lips such as oral cavity and teeth can be classified as lips. To solve these problems, this paper proposes a method which adopts the histogram-based classifier for the extraction of lips region. The proposed method consists of two stages, learning and test. The amount of computation is minimized because this method has no color conversion. The performance of proposed method gives 66.8% of detection rate compared to 28% of conventional ones.
내냉성 세균인 Pseudomonas mandelii로부터 lipase 유전자(lipT)를 클로닝하고 염기서열을 분석하였다. 열린해독틀 (open reading frame)은 1,686 bp로 구성되어 있고, 562개의 아미노산을 코딩한다. 서열분석 결과 많은 세린 효소에서 발견되는 Gly-X-Ser-X-Gly 모티프가 존재한다(Gly-His-Ser-Leu-Gly). 재조합 LipT 단백질은 대장균에서 주로 inclusion body 형태로 발현되었다. 니켈 친화성 크로마토그라피 방법으로 LipT 단백질을 분리하였으며 소량의 LipT 단백질이 refold 되었다. 이 효소는 p-nitrophenyl butyrate (C4)과 p-nitrophenyl octanoate (C8)에 대해 기질 특이성을 나타내었다.
Lip-reading technology that is studied them is used to compensate speech recognition degradation in noise environment in bi-modal's form. The most important thing is that search for correct lips area in this lip-reading. But, it is hard to forecast stable performance in dynamic environment. Used RASTA filter that show good performance to remove noise in the speech to compensate. This filter shows that improve performance of using time domain of digital filter. To this experiment observes performance of speech recognition only using image information, service chooses possible 22 words and did recognition experiment in car. We used hidden Markov model by speech recognition algorithm to compare this words' recognition performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.