• Title/Summary/Keyword: Link-based algorithm algorithm

Search Result 639, Processing Time 0.026 seconds

A New Link-Based Single Tree Building Algorithm for Shortest Path Searching in an Urban Road Transportation Network

  • Suhng, Byung Munn;Lee, Wangheon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.889-898
    • /
    • 2013
  • The shortest-path searching algorithm must not only find a global solution to the destination, but also solve a turn penalty problem (TPP) in an urban road transportation network (URTN). Although the Dijkstra algorithm (DA) as a representative node-based algorithm secures a global solution to the shortest path search (SPS) in the URTN by visiting all the possible paths to the destination, the DA does not solve the TPP and the slow execution speed problem (SEP) because it must search for the temporary minimum cost node. Potts and Oliver solved the TPP by modifying the visiting unit from a node to the link type of a tree-building algorithm like the DA. The Multi Tree Building Algorithm (MTBA), classified as a representative Link Based Algorithm (LBA), does not extricate the SEP because the MTBA must search many of the origin and destination links as well as the candidate links in order to find the SPS. In this paper, we propose a new Link-Based Single Tree Building Algorithm in order to reduce the SEP of the MTBA by applying the breaking rule to the LBA and also prove its usefulness by comparing the proposed with other algorithms such as the node-based DA and the link-based MTBA for the error rates and execution speeds.

Performance Improvement on MPLS On-line Routing Algorithm for Dynamic Unbalanced Traffic Load

  • Sa-Ngiamsak, Wisitsak;Sombatsakulkit, Ekanun;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1846-1850
    • /
    • 2005
  • This paper presents a constrained-based routing (CBR) algorithm called, Dynamic Possible Path per Link (D-PPL) routing algorithm, for MultiProtocol Label Switching (MPLS) networks. In MPLS on-line routing, future traffics are unknown and network resource is limited. Therefore many routing algorithms such as Minimum Hop Algorithm (MHA), Widest Shortest Path (WSP), Dynamic Link Weight (DLW), Minimum Interference Routing Algorithm (MIRA), Profiled-Based Routing (PBR), Possible Path per Link (PPL) and Residual bandwidth integrated - Possible Path per Link (R-PPL) are proposed in order to improve network throughput and reduce rejection probability. MIRA is the first algorithm that introduces interference level avoidance between source-destination node pairs by integrating topology information or address of source-destination node pairs into the routing calculation. From its results, MIRA improves lower rejection probability performance. Nevertheless, MIRA suffer from its high routing complexity which could be considered as NP-Complete problem. In PBR, complexity of on-line routing is reduced comparing to those of MIRA, because link weights are off-line calculated by statistical profile of history traffics. However, because of dynamic of traffic nature, PBR maybe unsuitable for MPLS on-line routing. Also, both PPL and R-PPL routing algorithm we formerly proposed, are algorithms that achieve reduction of interference level among source-destination node pairs, rejection probability and routing complexity. Again, those previously proposed algorithms do not take into account the dynamic nature of traffic load. In fact, future traffics are unknown, but, amount of previous traffic over link can be measured. Therefore, this is the motivation of our proposed algorithm, the D-PPL. The D-PPL algorithm is improved based on the R-PPL routing algorithm by integrating traffic-per-link parameters. The parameters are periodically updated and are dynamically changed depended on current incoming traffic. The D-PPL tries to reserve residual bandwidth to service future request by avoid routing through those high traffic-per-link parameters. We have developed extensive MATLAB simulator to evaluate performance of the D-PPL. From simulation results, the D-PPL improves performance of MPLS on-line routing in terms of rejection probability and total throughput.

  • PDF

Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS Routing

  • Cho, Kang Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we propose a AH LSU(Advanced Hybrid QoS Routing Link State Update) Algorithm that improves the performance of Hybrid LSU(Hybrid QoS Link State State Update) Algorithm with statistical information of flow holding time in network. AH LSU algorithm has had both advantages of LSU message control in periodic QoS routing LSU algorithm and QoS routing performance in adaptive LSU algorithm. It has the mechanism that calculate LSU message transmission priority using the flow of statistical request bandwidth and available bandwidth and include MLMR(Meaningless LSU Message Removal) mechanism. MLMR mechanism can remove the meaningless LSU message generating repeatedly in short time. We have evaluated the performance of the MLMR mechanism, the proposed algorithm and the existing algorithms on MCI simulation network. We use the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.

Link Prediction Algorithm for Signed Social Networks Based on Local and Global Tightness

  • Liu, Miao-Miao;Hu, Qing-Cui;Guo, Jing-Feng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.213-226
    • /
    • 2021
  • Given that most of the link prediction algorithms for signed social networks can only complete sign prediction, a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectively by using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the total similarity of the node pair can be obtained by combining them. Its absolute value measures the possibility of the two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectiveness and correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are also carried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, and PSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like area under the curve (AUC), Precision, improved AUC', improved Accuracy', and so on. Results show that the proposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy is higher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy and computational complexity.

Truncated Kernel Projection Machine for Link Prediction

  • Huang, Liang;Li, Ruixuan;Chen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.58-67
    • /
    • 2016
  • With the large amount of complex network data that is increasingly available on the Web, link prediction has become a popular data-mining research field. The focus of this paper is on a link-prediction task that can be formulated as a binary classification problem in complex networks. To solve this link-prediction problem, a sparse-classification algorithm called "Truncated Kernel Projection Machine" that is based on empirical-feature selection is proposed. The proposed algorithm is a novel way to achieve a realization of sparse empirical-feature-based learning that is different from those of the regularized kernel-projection machines. The algorithm is more appealing than those of the previous outstanding learning machines since it can be computed efficiently, and it is also implemented easily and stably during the link-prediction task. The algorithm is applied here for link-prediction tasks in different complex networks, and an investigation of several classification algorithms was performed for comparison. The experimental results show that the proposed algorithm outperformed the compared algorithms in several key indices with a smaller number of test errors and greater stability.

An Improvement of the P2P Streaming Network Topology Algorithm Using Link Information (연결 정보를 이용한 P2P 스트리밍 네트워크 구조의 개선)

  • Lee, Sang-Hoon;Han, Chi-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.49-57
    • /
    • 2012
  • In P2P streaming management, peer's churning and finding efficient topology architecture optimization algorithm that reduces streaming delay is important. This paper studies a topology optimization algorithm based on the P2P streaming using peer's link information. The proposed algorithm is based on the estimation of peer's upload bandwidth using peer's link information on mesh-network. The existing algorithm that uses the information of connected links is efficient to reduce message overload in the point of resource management. But it has a risk of making unreliable topology not considering upload bandwidth. And when some network error occurs in a server-closer-peer, it may make the topology worse. In this paper we propose an algorithm that makes up for the weak point of the existing algorithm. We compare the existing algorithm with the proposed algorithm using test data and analyze each simulation result.

A Travel Time Estimation Algorithm using Transit GPS Probe Data (Transit GPS Data를 이용한 링크통행시간 추정 알고리즘 개발)

  • Choi, Keechoo;Hong, Won-Pyo;Choi, Yoon-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.739-746
    • /
    • 2006
  • The bus probe-based link travel times were more readily available due to bus' fixed route schedule and it was different from that of taxi-based one in its value for the same link. At the same time, the bus-based one showed less accurate information than the taxi-based link travel time, in terms of reliability expressed by 1-RMSE(%) measure. The purpose of this thesis is to develop a heuristic algorithm for mixing both sources-based link travel times. The algorithm used both real-time and historical profile travel times. Real-time source used 4 consecutive periods' average and historical source used average value of link travel time for various congestion levels. The algorithm was evaluated for Seoul urban arterial network 3 corridors and 20 links. The results based on the developed algorithm were superior than the mere fusion based link travel times and the reliability amounted up to 71.45%. Some limitation and future research agenda have also been discussed.

A Novel Multi-link Integrated Factor Algorithm Considering Node Trust Degree for Blockchain-based Communication

  • Li, Jiao;Liang, Gongqian;Liu, Tianshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3766-3788
    • /
    • 2017
  • A blockchain is an underlying technology and basic infrastructure of the Bitcoin system. At present, blockchains and their applications are developing rapidly. However, the basic research of blockchain technology is still in the early stages. The efficiency and reliability of blockchain communication is one of the research problems that urgently need to be studied and addressed. Existing algorithms may be less feasible for blockchain-based communication because they only consider a single communication factor (node communication capability or node trust degree) and only focus on a single communication performance parameter(communication time or communication reliability). In this paper, to shorten the validation time of blockchain transactions and improve the reliability of blockchain-based communication, we first establish a multi-link concurrent communication model based on trust degree, and then we propose a novel integrated factor communication tree algorithm (IFT). This algorithm comprehensively considers the node communication link number and the node trust degree and selects several nodes with powerful communication capacity and high trust as the communication sources to improve the concurrency and communication efficiency. Simulation results indicate that the IFT algorithm outperforms existing algorithms. A blockchain communication routing scheme based on the IFT algorithm can increase communication efficiency by ensuring communication reliability.

Design of Advanced HITS Algorithm by Suitability for Importance-Evaluation of Web-Documents (웹 문서 중요도 평가를 위한 적합도 향상 HITS 알고리즘 설계)

  • 김분희;한상용;김영찬
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.2
    • /
    • pp.23-31
    • /
    • 2003
  • Link-based search engines generate the rank using linked information of related web-documents . HITS(Hypertext Internet Topic Search), representative ranking evaluation algorithm using a special feature of web-documents based on such link, evaluates the importance degree of related pages from linked information and presents by ranking information. Problem of such HITS algorithm only is considered the link frequency within documents and depends on the set of web documents as input value. In this paper, we design the search agent based on better HITS algorithm according to advanced suitability between query and search-result in the set of given documents from link-based web search engine. It then complements locality of advanced search performance and result.

  • PDF

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.