• Title/Summary/Keyword: Link Speed

Search Result 708, Processing Time 0.031 seconds

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

An Analysis of Optimal Link Voltage of VS-SVPWM for Current Harmonics Reduction

  • Lee Dong-Hee;Park Han-Woong;Ahn Jin-Woo;Kwon Young-Ahn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.343-346
    • /
    • 2002
  • In recent, complex SVPWM (Space Vector PWM) algorithm can be easily implemented by high performance microprocessor and DSP. Various SVPWM techniques are widely studied due to the advantages of low harmonic distortion and high use ratio of D.C. link voltage. Most of various studies for improving of VS-PWM inverter performance are concentrated about switching pattern and zero pulse pattern split algorithms. However, dc link voltage that is determined at rated load and speed conditions is not proper in the low speed and under rated load. In this paper, analysis of current ripple with digitally implemented SVPWM inverter is introduced according to link voltage. The optimal link voltage in the designed inverter system and load condition is provided in order to suppress output voltage error and current ripple. As remaining the effective voltage vector interval per sampling period sufficiently, additional voltage error and current ripple are suppressed. The proposed algorithm is verified through digital simulation and experimental results.

  • PDF

Multi-Channel High Speed Data Link Design for Small SAR Satellite Image Data Transmission

  • Kwag, Young K.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1436-1439
    • /
    • 2002
  • In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

Multi-Channel Data Link Module Design for High Speed Image Data Transmission from Spaceborne SAR (위성 영상 레이다의 고속자료 전송을 위한 멀티 채널 데이터 전송 모듈 설계와 성능 특징)

  • Kwag, Young-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution. It is due to the strict requirement for the real-time data transmission from a series of massive raw image data of spaceborne SAR to the ground station in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선)

  • 김상균;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

PFC Bridge Converter for Voltage-controlled Adjustable-speed PMBLDCM Drive

  • Singh, Sanjeev;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.215-225
    • /
    • 2011
  • In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage.

Determination of Multicast Routing Scheme for Traffic Overload in On-Line Game (온라인 게임에서 트래픽 부하 상태에 따른 멀티캐스트 라우팅 방식의 결정)

  • Lee, Kwang-Jae;Doo, Gil-Soo;Seol, Nam-O
    • Journal of Korea Game Society
    • /
    • v.2 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The deployment of multicast communication services in the Internet is expected to lead a stable packet transfer even in heavy traffic as in On-Line Game environment. The Core Based Tree scheme among many multicast protocols is the most popular and suggested recently. However, CBT exhibit two major deficiencies such as traffic concentration or poor core placement problem. So, measuring the bottleneck link bandwidth along a path is important for understanding the performance of multicast. We propose not only a definition of CBT's core link state that Steady-State(SS), Normal-State(NS) and Bottleneck State(BS) according to the estimation link speed rate, but also the changeover of multicast routing scheme for traffic overload. In addition, we introduce anycast routing tree, a efficient architecture for construct shard multicast trees.

  • PDF

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer (내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계)

  • Lee, Cho-Won;Kim, In Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.