• 제목/요약/키워드: Link Body

검색결과 237건 처리시간 0.029초

경량화를 위한 수직 다관절로봇 매니퓰레이터의 해석 (Analysis of Aticulated Robot Manipulator to Reduce Body's Weight)

  • 최원홍;김태기;이의훈;최만수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.575-581
    • /
    • 1993
  • This paper deals with analysis of articulated robot manipulator used for Arc welding and Material handling. Compared with present robot of which weight holding capacity is 6kg, this robot shows wider and symmetric working range for it's serial type mechanism. The link length is determined to have widest working range by using optimal simulation. To reduce body's weight, small AC servo motor is adopted and driving peak torque exerted at each joint is reduced by using dynamic analysis. So it is possible to reduce body's weight by 40% compared with the same class's robot and get wider working range. And by adopting modular design concept, each axis is designed to be changed easily for user's special need and repair.

  • PDF

다관절 로봇용 고속 제어보드 개발 및 제어 (Fast Processing System for Motion Control of Multi-body Robots)

  • 심재익;권오흥;김태성;박종현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.951-956
    • /
    • 2007
  • This paper suggests a high-speed control method which is suitable for multi-joint robots using a real-time stand-alone controller for general-purpose. The fast processing controller consists of a PCI Interface Board and 2-axe PWM drivers. The PCI Interface Board consists of 32-channel PWM output ports, 32-channel Encoder Counters, 32-channel A/D Converters and 48-channel Digital I/O ports, and all the I/O data transmissions are completed within 1ms. And The 2-axe PWM driver can be redesigned easily in order to embed in each link. Experimental implementations show that the high-speed control method can be used for the real-time control which is essential to controlling of multi-body robots such as humanoid robots. Especially, it is efficient for realizing the model-based motion control in demand of much calculation time by the high I/O communication speed.

  • PDF

A Method for Identifying Human-generated Forces during an Extensor Thrust

  • Hong Seong-Wook;Patrangenaru Vlad;Singhose William;Sprigle Stephen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.66-71
    • /
    • 2006
  • Some wheelchair users with neuromuscular disorders experience involuntary extensor thrusts, which may cause injuries via impact with the wheelchair, cause the user to slide out of the wheelchair seat, and damage the wheelchair. Knowledge of the human-generated forces during an extensor thrust is of great importance in devising safer, more comfortable wheelchairs. This paper presents an efficient method for identifying human-generated forces during an extensor thrust. We used an inverse dynamic approach with a three-link human body model and a system for measuring human body motion. We developed an experimental system that determines the angular motion of each human body segment and the force at the footrest, which was used to overcome the mathematical indeterminacy of the problem. The proposed method was validated experimentally, illustrating the force-identification process during an extensor thrust.

무게측정방식에 따른 Lever-linked Roberval Mechanism의 설계특성 (Obtaining Design Characteristics of Lever-linked Roberval Mechanism through Weighing Method)

  • 안지윤;안중환;이길승;김화영
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.336-341
    • /
    • 2020
  • The deflection and null balance methods are used for precision force measurement in the precision industry. Since both methods are based on deformation, the performance of the load cell mechanism is important. In this study, the design variables were obtained via the free body diagram of a lever-linked Roberval mechanism (combined with a flexible hinge link and a Roberval mechanism), and the design characteristics were analyzed according to the weight method. Based on the design characteristics, the optimal design was conducted according to the weight method and FEM was used to verify its reliability.

3차원 고기동 궤도차량의 동적 궤도장력 특성 연구 (Characteristics of Dynamic Track Tension for Three Dimensional High Mobility Tracked Vehicle)

  • 서문석;최진환;류한식;배대성
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.112-120
    • /
    • 2003
  • In this paper, dynamic track tension fur high mobility tracked vehicle is investigated by multibody dynamic simulation techniques. This research focuses on a heavy military tracked vehicle which has sophisticated suspension and rubber bushed rack systems. In order to obtain accurate dynamic track tension of track subsystems, each track link is modeled as a body which has six degrees of freedom. A compliant bushing element is used to connect track links. Various virtual proving ground models are developed to observe dynamic changes of the track tension. Numerical studies of the dynamic track tension are validated against the experimental measurements. The effects of pre-tensions, traction forces, fuming resistances, sprocket torques, ground profiles, and vehicle speeds, for dynamic responses of track tensions are explored, respectively.

시각기반 웜 자세의 기구학적 모형화 (Vision-based Kinematic Modeling of a Worm's Posture)

  • 도용태;탄콕키옹
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

단일링크 유연매니퓰레이터의 센서리스 진동제어 (Sensorless Vibration Control of a Single-Link Flexible Manipulator)

  • 한상수;신호철;서용칠;김승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.233-236
    • /
    • 2004
  • In this paper, a new sensorless vibration control scheme is proposed for a flexible manipulator system. A robust sliding mode controller incorporating with a ‘reaction moment observer’ used for the estimation of the reaction moment reciprocally acting on flexible arm and hub inertia is introduced to achieve desired control target. The rigid body dynamics of the single-link flexible manipulator is simply considered in the design of the sliding mode controller. Then, the reaction moment is estimated by the proposed reaction moment observer to suppress the residual vibration of the flexible arm. The performance of the proposed control scheme is verified by computer simulation and experiment.

  • PDF

자이로를 이용한 두 링크 도립진자의 자세안정화 (Stabilization of a Two-link Inverted Pendulum with a Rate Gyro)

  • 조백규
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.28-34
    • /
    • 2012
  • Human generally uses three methods to keep balance. One of them is using reactive momentum such as swing an upper body or arms. In this study, we proposed a balancing controller for the reactive momentum method using an inverted pendulum. We simplified a human or a humanoid robot as a two-link inverted pendulum having two edges. In addition, we proposed a distinctive condition for controller transition. If a human is pushed, he has to change a balancing controller from using an ankle torque to using a reactive momentum or changing foot placement. When the balancing controller is changed from using an ankle torque to using a reactive momentum, it is required a proper timing to keep a stability and make smooth movement. In the experiment, the proposed controller and distinctive condition were verified.

10자유도 이족 보행로봇 운동식의 모텔링 (Modeling for The Dynamics of 10 D.O.F Biped Robot)

  • 최형식;이호식;박용헌;전대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.343-343
    • /
    • 2000
  • The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. Using this, we developed a new type of 10 D.O.F biped robot. The dynamics model of the biped robot is investigated in this paper. In the modeling process, the robot dynamics are expressed in the joint coordinates using the Euler-Lagrange equation. Then, they are converted in to the sliding joint coordinates, and joint torques are expressed in the force along the sliding direction of the ball screw. To test modeling of the robot, a computer simulation was performed.

  • PDF

인체 계측학을 이용한 안전하고 편리한 작업 한계면에 관한 연구 (- A Study on Safe and Convenient Work-Envelop Using Anthropometric Stereotype -)

  • 임영문;방혜경;최인려
    • 대한안전경영과학회지
    • /
    • 제6권4호
    • /
    • pp.99-106
    • /
    • 2004
  • In developing criteria for establishing workstation reach limits, it is essential to select the appropriate anthropometric stereotype for solving a specific design problem. The most important factor for comfortable workstation is to eliminate trunk flexion from the neutral (upright) posture. A solution to this design can be developed using population stature and link length data. This paper provides a methodology for design of comfortable workstation using anthropometric stereotype. Application of this methodology can be utilized in various designs for work space including standing and sitting workplace. For the purpose of this study, the data are measured by some parts on body such as stature, arm length, wrist height, elbow height, and shoulder hight. The samples for this study are randomly chosen from university students in Seoul and Kangnung during sixteen months (2003.3-2004.6).