• Title/Summary/Keyword: Linguistic processing

Search Result 169, Processing Time 0.027 seconds

Exploration on the Strategies of Organizing Curriculum for Improvement of Major Basic Competencies in the Agricultural High School Students to University by Departments Identical to Their Major (농업계 고등학생들의 동일계 대학 전공기초능력 향상을 위한 교육과정 편성 방안 탐색)

  • Kim, Jin-Gu;Lee, Gun-Nam
    • Journal of vocational education research
    • /
    • v.29 no.3
    • /
    • pp.61-83
    • /
    • 2010
  • The purpose of this study was to analyze high schools' general and special subject required to successfully complete same stream curriculum which is identical to their major from agricultural high school, and to offer basic data on strategies of organizing agricultural high schools' curriculum for improving universities' major basic competencies. Using purposeful sampling technique, the professors of 116 universities professors in 8 agricultural university were analyzed through the survey research. The result was as follows. first, it appeared that for successful completion of major subjects of the same stream university, the basic science subject such as biology and chemistry has high relation with major basic ability, however math and physics are related highly in agricultural machine and agricultural civil engineering department, economics and math are in agricultural produce distribution department. Second, the basic ability such as linguistic competence and foreign language ability are essential to complete major subject. Third, if we look into relation of agriculture and life science industry stream specialized subject with major basic competencies, we can find considerable similarity between major field of university and subject name of specialized high school. Fourth, the main opinion is that basic concept and principle, laws of nature are should be main contents which is able to be practical, however experiment and practice is in food processing department, and academic theory is in biotechnology department.

A Study on the Oral Characteristics in Personal Narrative Storytelling (체험 이야기하기의 구술적 특성에 대하여)

  • Kim, Kyung-Seop
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.143-150
    • /
    • 2022
  • The folk language that lives and breathes in modern works does not just come from old stories, but it is a personal narrative which is based on the experiences of the narrator. Like many genres in oral literature, most of these personal narratives occur from the impulse of communicating and reinventing rather than from the impulse of creating. Compared to traditional folktales, stories about an individual's experiences, such as personal narratives are often performed by adding the individual tendencies of the narrator. In so doing, the phenomenon of "processing the experience by estimating it and reinterpreting the memories roughly" occurs, and this is a significant factor in making the oral literature. However, the question that arises here is: How can we deal with these significant elements that are inevitably captured when performed orally? Text linguistics, the main methodology of this paper, implies the possibility of expressing the impromptu elements of oral literature. Also, textual linguistic analysis of personal narratives provides the possibility of discussing oral characteristics from various angles which have been difficult to analyze, such as on-site atmosphere, speaker mistakes, contradictions in stories, and audience reactions. Hence, it is possible to effectively discuss oral-poetics in oral literature which are based on the one-off of 'words', the 'roughness' of the on-site atmosphere, and the stackability of the 'wisdom of crowds'. Furthermore, it is expected to contribute to the study of personal narrative storytelling that plays an important part in Veabal art in community culture.

Study on Zero-shot based Quality Estimation (Zero-Shot 기반 기계번역 품질 예측 연구)

  • Eo, Sugyeong;Park, Chanjun;Seo, Jaehyung;Moon, Hyeonseok;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.35-43
    • /
    • 2021
  • Recently, there has been a growing interest in zero-shot cross-lingual transfer, which leverages cross-lingual language models (CLLMs) to perform downstream tasks that are not trained in a specific language. In this paper, we point out the limitations of the data-centric aspect of quality estimation (QE), and perform zero-shot cross-lingual transfer even in environments where it is difficult to construct QE data. Few studies have dealt with zero-shots in QE, and after fine-tuning the English-German QE dataset, we perform zero-shot transfer leveraging CLLMs. We conduct comparative analysis between various CLLMs. We also perform zero-shot transfer on language pairs with different sized resources and analyze results based on the linguistic characteristics of each language. Experimental results showed the highest performance in multilingual BART and multillingual BERT, and we induced QE to be performed even when QE learning for a specific language pair was not performed at all.

Active Inferential Processing During Comprehension in Poor Readers (미숙 독자들에 있어 이해 도중의 능동적 추리의 처리)

  • Zoh Myeong-Han;Ahn Jeung-Chan
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.2
    • /
    • pp.75-102
    • /
    • 2006
  • Three experiments were conducted using a verification task to examine good and poor readers' generation of causal inferences(with because sentences) and contrastive inferences(with although sentences). The unfamiliar, critical verification statement was either explicitly mentioned or was implied. In Experiment 1, both good and poor readers responded accurately to the critical statement, suggesting that both groups had the linguistic knowledge necessary to the required inferences. Differences were found, however, in the groups' verification latencies. Poor, but not good, readers responded faster to explicit than to implicit verification statements for both because and although sentences. In Experiment 2, poor readers were induced to generate causal inferences for the because experimental sentences by including fillers that were apparently counterfactual unless a causal inference was made. In Experiment 3, poor readers were induced to generate contrastive inferences for the although sentences by including fillers that could only be resolved by making a contrastive inference. Verification latencies for the critical statements showed that poor readers made causal inferences in Experiment 2 and contrastive inferences in Experiment 3 doting comprehension. These results were discussed in terms of context effect: Specific encoding operations performed on anomaly backgrounded in another passage would form part of the context that guides the ongoing activity in processing potentially relevant subsequent text.

  • PDF

The Interaction Effect of Foreign Model Attractiveness and Foreign Language Usage (외국인 모델의 매력도와 외국어 사용의 상호작용 효과)

  • Lee, Ji-Hyun;Lee, Dong-Il
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.3
    • /
    • pp.61-81
    • /
    • 2007
  • Recently, use of foreign models and foreign language in advertising is a general trend in Korea even though the effect has not been well-known..Most of the previous research shows rather an opposite effect claiming marketing communication is more effective when higher congruity between marketing communication and consumer's cultural values are achieved. However, the introduction of global culture due to the expansion of new media such as Internet or cable television makes the congruity not the best choice of marketing strategy. In addition, use of highly attractive models in advertising to increase the effect of advertising is general. However, recent studies show that targeted women audience tend to compare themselves to the highly attractive models and do experience negative sentiment. Bower (2001) proved the difference between 'comparer' and 'noncomparer' when women face highly attractive models. The results show that a comparer who has an intention to compare highly attractive model (HAM) with herself has a significantly negative effect on model expertise, product argument, product evaluation and buying intention. Therefore, HAM is not always a good choice and model attractiveness plays a role in the processing other cues or changing the advertising effect from result of processing other cues. The purpose of this study is to investigate the effect of the use of foreign language on the advertising response of the audience with regard of the model attractiveness. For the empirical study, the virtual advertising using foreign models (HAM, NAM), brand names and slogans(Korean, English) were used as stimuli. The respondents of each stimulus were 75('HAM-Korean'), 75('NAM-Korean'), 66('HAM-English') and 66 ('NAM-English') respectively. To establish the effect of marketing communication, the attitude for media(AM), the attitude for product(AP), targetedness(TD), overall quality(OQ), and purchase intention(PI) with 7 point likert scale were measured. The manipulation was verified to check the difference between HAM attractiveness assessment (m=3.27) and NAM attractiveness assessment (m=5.12). The mean difference was statiscally significant (p<.05). As a result, all consequences were significantly changed with model attractiveness, and overall quality evaluation(OQ) were significantly changed with language. The interaction effect from model attractiveness and language was significant on attitude toward the product(AP) and purchase intention(PI). To analyze the difference, the mean values and standard deviation of consequences were compared. The result was more positive when model attractiveness was high for all consequences. For language effect, the assessment was more positive when English was used for OQ. Considering model attractiveness and language simultaneously, HAM-Korean was more positive for AP and PI, and NAM-English was more positive for AP and PI. In other words, the interaction effect was confirmed by model attractiveness and language. As mentioned above, use of foreign models and foreign language in advertising was explained by cultural match up hypothesis (Leclerc et al. 1994) which claimed that culture of origin effect. In other words, in advertising, use of same cultural language with the foreign model could make positive assessment for OQ. But this effect was moderated by model attractiveness. When the model attractiveness was low, the use of English makes PI high because of the effect of foreign language which supported the cultural match up hypothesis. When the model attractiveness was low, the use of Korean made AP and PI high because the effect of foreign language was diluted. It was a general notion that the visual cues got processed before (Holbrook and Moore, 1981; Sholl et al, 1995) compared to linguistic cues. Therefore, when consumers were faced HAM, so much perception was already consumed at processing visual cues making their native language of Korean to strongly and positively connected with the advertising concept. On the contrary, when consumers were faced with NAM, less perception was consumed compared to HAM, making English to accompany cultural halo effect which affected more positively. Therefore, when foreign models were employed in advertising, the language must be carefully selected according to the level of model attractiveness.

  • PDF

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

Mapping Heterogenous Ontologies for the HLP Applications - Sejong Semantic Classes and KorLexNoun 1.5 - (인간언어공학에의 활용을 위한 이종 개념체계 간 사상 - 세종의미부류와 KorLexNoun 1.5 -)

  • Bae, Sun-Mee;Im, Kyoung-Up;Yoon, Ae-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.95-126
    • /
    • 2010
  • This study proposes a bottom-up and inductive manual mapping methodology for integrating two heterogenous fine-grained ontologies which were built by a top-down and deductive methodology, namely the Sejong semantic classes (SJSC) and the upper nodes in KorLexNoun 1.5 (KLN), for HLP applications. It also discusses various problematics in the mapping processes of two language resources caused by their heterogeneity and proposes the solutions. The mapping methodology of heterogeneous fine-grained ontologies uses terminal nodes of SJSC and Least Upper Bounds (LUB) of KLN as basic mapping units. Mapping procedures are as follows: first, the mapping candidate groups are decided by the lexfollocorrelation between the synsets of KLN and the noun senses of Sejong Noun Dfotionaeci(SJND) which are classified according to SJSC. Secondly, the meanings of the candidate groups are precisely disambiguated by linguistic information provided by the two ontologies, i.e. the hierarchicllostructures, the definitions, and the exae les. Thirdly, the level of LUB is determined by applying the appropriate predicates and definitions of SJSC to the upper-lower and sister nodes of the candidate LUB. Fourthly, the mapping possibility ic inthe terminal node of SJSC is judged by che aring hierarchicllorelations of the two ontologies. Finally, the ituorrect synsets of KLN and terminologiollocandidate groups are excluded in the mapping. This study positively uses various language information described in each ontology for establishing the mapping criteria, and it is indeed the advantage of the fine-grained manual mapping. The result using the proposed methodology shows that 6,487 LUBs are mapped with 474 terminal and non-terminal nodes of SJSC, excluding the multiple mapped nodes, and that 88,255 nodes of KLN are mapped including all lower-level nodes of the mapped LUBs. The total mapping coverage is 97.91% of KLN synsets. This result can be applied in many elaborate syntactic and semantic analyses for Korean language processing.

  • PDF

A COMPARATIVE STUDY ON AUDITORY ATTENTION AND PHONEME DIFFERENTIAL ABILITY AMONG CHILDREN WITH READING DISABILITY AND WITH ATTENTION DEFICIT/HYPERACTIVITY (읽기 장애와 주의력 결핍/과잉 운동 장애아동의 주의력 과제와 음소 변별 과제 수행 비교 - 청각 과제를 중심으로 -)

  • Lee, Kyung-Hee;Shin, Min-Sup;Kim, Boong-Nyun;Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • Objective:In this study, we hypothesized that deficit in processing rapid linguistic stimuli is at the heart of Reading Disability(RD) and deficit in response inhibition is at the heart of Attention Deficit/Hyperactivity(ADHD). We conducted experiments to identify the core cognitive characteristics of children either with RD or with ADHD or with both, using attentional tasks and phoneme differential tests. Method:In the study 1, 28 children with ADHD, 16 children with RD+ADHD were individually administered visual/auditory performance tests. Then, the differences of performance on attentional tasks between two groups were compared while IQs of two groups were controlled. In the study 2, 13 children with RD+ADHD/RD, 13 children with ADHD, and 13 normal children were administered computerized phoneme differential tests. Result:Visual attentional tasks did not distinguish an ADHD group from a RD+ADHD group. With auditory attentional tasks, however, the comorbid group showed significantly more difficulties, causing a large variance in reaction time. RD, RD+ADHD, and ADHD groups showed more errors in phoneme differential tests than a normal control group, and each group showed distinctive performance patterns. Discussion:An ADHD group had difficulty in response inhibition and sustained attention, and children who also had RD along with ADHD magnified the auditory attentional difficulties. Even though children with RD had more trouble with responding correctly to target stimuli, their responses were not significantly different from those of children with ADHD.

  • PDF

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.