• Title/Summary/Keyword: Linguistic Rules

Search Result 158, Processing Time 0.026 seconds

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

GA based Fuzzy Modeling using Fuzzy Equalization and Linguistic Hedge (퍼지 균등화와 언어적인 Hedge를 이용한 GA 기반 퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.217-220
    • /
    • 2001
  • The fuzzy equalization method does not require the usual learning step for generating fuzzy rules. However it is heavily depend on the given input-output data set. So, we adapt an hierarchical scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership functions obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to the Rice taste data and got better results than previous ones.

  • PDF

Ambiguity Types of the Homonymic & Heterographic Units for Improving Korean Voice Recognition System - a Preliminary Research (한국어 음성인식 시스템 향상을 위한 동음이철 단위의 중의성 유형 분류)

  • Yoon, Ae-Sun;Kang, Mi-Young
    • Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.67-81
    • /
    • 2008
  • The accuracy rate of P2G (Phoneme-to-Grapheme) is one of the important factors determining the quality of unlimited voice recognition (VR) systems. Few studies were, however, conducted to reduce ambiguities of a phoneme string which can be segmented into a variety of different linguistic units (i.e. morphemes, words, eo-jeols), thus be transformed into more than one grapheme string. This paper is a preliminary research for building a large knowledge base of those homonymic & heterographic units(HHUs), which will provide unlimited Korean VR systems with more accurate P2G information. This paper analyzes 2 main factors generating HHUs: (1) boundary determination of the prosodic unit; (2) its segmentation into linguistic units. In this paper, linguistic characteristics determining variable boundaries of a prosodic unit are investigated, and the ambiguity types of HHUs are classified in accordance with their morphological and syntactic structures as well as with the phonological rules governing them.

  • PDF

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

Knowledge Base Construction of Ship Design Using Fuzzy Equalization and Rough Sets (퍼지균등화와 러프집합을 이용한 선박설계 지식기반 구축)

  • Suh, Kyu-Youl
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.115-119
    • /
    • 2007
  • Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.

GA based Sequential Fuzzy Modeling Using Fuzzy Equalization and Linguistic Hedge (퍼지 균등화와 언어적 Hedge를 이용한 GA 기반 순차적 퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.827-832
    • /
    • 2001
  • In this paper, we propose a sequentially optimization method for fuzzy inference system using fuzzy equalization and linguistic hedge. The fuzzy equalization does not require the usual learning step for generating fuzy rules. However, it is too sensitive for the given input-output data set. So, we adopt a sequential scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership function obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to rice taste data and got better results than previous ones.

  • PDF

Rule Construction for Determination of Thematic Roles by Using Large Corpora and Computational Dictionaries (대규모 말뭉치와 전산 언어 사전을 이용한 의미역 결정 규칙의 구축)

  • Kang, Sin-Jae;Park, Jung-Hye
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.219-228
    • /
    • 2003
  • This paper presents an efficient construction method of determination rules of thematic roles from syntactic relations in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our method is objective and efficient by considering large corpora, which contain practical osages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of the rules.

Determination of Thematic Roles according to Syntactic Relations Using Rules and Statistical Models in Korean Language Processing (한국어 전산처리에서 규칙과 확률을 이용한 구문관계에 따른 의미역 결정)

  • 강신재;박정혜
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents an efficient determination method of thematic roles from syntactic relations using rules and statistical model in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our hybrid method is objective and efficient by considering large corpora, which contain practical usages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of our system.

  • PDF

A Design of an Improved Linguistic Model based on Information Granules (정보 입자에 근거한 개선된 언어적인 모델의 설계)

  • Han, Yun-Hee;Kwak, Keun-Chang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we develop Linguistic Model (LM) based on information granules as a systematic approach to generating fuzzy if-then rules from a given input-output data. The LM introduced by Pedrycz is performed by fuzzy information granulation obtained from Context-based Fuzzy Clustering(CFC). This clustering estimates clusters by preserving the homogeneity of the clustered patterns associated with the input and output data. Although the effectiveness of LM has been demonstrated in the previous works, it needs to improve in the sense of performance. Therefore, we focus on the automatic generation of linguistic contexts, addition of bias term, and the transformed form of consequent parameter to improve both approximation and generalization capability of the conventional LM. The experimental results revealed that the improved LM yielded a better performance in comparison with LM and the conventional works for automobile MPG(miles per gallon) predication and Boston housing data.

Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot (스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현)

  • Kim Hong-Rae;Han Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.