• Title/Summary/Keyword: Linearization Method

Search Result 484, Processing Time 0.037 seconds

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

A Performance Comparison of Nonlinear Kalman Filtering Based Terrain Referenced Navigation (비선형 칼만 필터 기반의 지형참조항법 성능 비교)

  • Mok, Sung-Hoon;Bang, Hyo-Choong;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.108-117
    • /
    • 2012
  • This paper focuses on a performance analysis of TRN among various nonlinear filtering methods. In a TRN research, extended Kalman filter(EKF) is a basic estimation algorithm. In this paper, iterated EKF(IEKF), EKF with stochastic linearization(SL), and unscented Kalman filter(UKF) algorithms are introduced to compare navigation performance with original EKF. In addition to introduced sequential filters, bank of Kalman filters method, which is one of the batch method, is also presented. Finally, by simulating an artificial aircraft mission, EKF with SL was chosen as the most consistent filter in the introduced sequential filters. Also, results suggested that the bank of Kalman filters can be alternative for TRN, when a fast convergence of navigation solution is needed.

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

Input Time-Delay Compensation for a Nonlinear Control System

  • Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-400
    • /
    • 2004
  • In most physical processes, the transfer function includes time-delay, and in the general distributed control system using computer network, there exists inherent time-delay caused by the spatial separation between controllers and actuators. This work deals with the synthesis of a discrete-time controller for a nonlinear system and proposes a new effective method to compensate the influence of input time-delay. The controller is synthesized by using input/output linearization. Under the circumstance that input time-delay exists, the system response has more overshoot and tends to diverge. For these reasons, the controller has to produce future input value that will be needed for the system. In order to calculate the future input value, some predictors are adopted. Using the discretization via Euler's method, numerical simulations about the Van der Pol system are performed to evaluate the performance of the proposed method.

  • PDF

Application of nonlinear control via output redefinition to missile autopilot (출력재정의를 통한 비선형제어 기법의 미사일 오토파일롯 응용)

  • 류진훈;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1496-1499
    • /
    • 1996
  • A nonlinear tracking control technique developed for the control of nonlinear systems has been applied to the autopilot design of missile system. The difficulties in the application of inversion based control methods such as input-output feedback linearization and sliding mode control due to nonminimum phase characteristics are discussed. To avoid the stability problem associated with unstable zero dynamics, the input-output feedback linearization is applied with output-redefinition method to normal acceleration control. The output-redefinition method gives an indirect way to apply the nonlinear controls to nonminimum phase plants by redefining the plant output such that the tracking control of the modified output ensures the asymptotic tracking of the original output. The numerical simulation shows satisfactory results both for nominal and for slightly perturbed missile systems adopting the sliding mode control technique. However, the robustness problem in this method is briefly investigated and verified with the simulation.

  • PDF

Sweeping Automatic Linearization for Wavelength Swept Laser Used in Structure Safety Monitoring (구조물 안전 모니터링용 파장 스위핑 레이저를 위한 스위핑 자동 선형화)

  • Lee, Duk-Kyu;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, a novel method for sweeping automatic linearization of wavelength swept laser is proposed. Through the test performed on the implemented laser, the linear sweeping is held up well with a 97% decrease in nonlinearity, and 60 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The proposed method uses fiber Bragg grating array, optical-electronic conversion circuit, FPGA embedded module, and a LabVIEW program to generate new compensated wave patterns which were applied to the fiber Fabry-Perot tunable filter. Linear sweeping can reduce the cumbersome and time-consuming recalibration process required for nonlinear sweeping. Additionally, the proposed method provides more accurate measurement results for the structure safety monitoring system.

Efficient Method for Linearizability via Restricted Dynamic Feedback (제한적인 동적 피드백 선형화 가능성의 효율적인 판단 방법)

  • Park Sang Jun;Bang Hyun Jin;Lee Bong-Gi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.87-89
    • /
    • 2005
  • The necessary and sufficient conditions for the linearization of the nonlinear control systems via restricted dynamic feed back have been found. These require checking with almost all indices from 0 to 2n-3. In this paper, we exploit the inherent structure of the system and find an efficient method to find linearizability of the system by reducing the range of the index to check. Our examples show the efficiency of our method.

Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal (비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

A Study on the Dynamic Characteristics of a Turbocharged Diesel Engine (터보 과급 디젤 기관의 동특성에 관한 연구)

  • Choi, N.J.;Lee, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.143-154
    • /
    • 1995
  • This study investigates the response characteristics of a four-cylinder four-stroke turbocharged diesel engine by using computer simulation and experiments when a rapid acceleration is applied to the fuelpump rack. In the theoretical analysis, linearization method is used to avoid the difficulty on the complex nonlinear functions. Comppressor exit pressure, pressure and temperature of turbine inlet, and turbocharger speed are chosen as the independent variables of transfer functions which represent the dynamic characteristics of the turbocharger system, and expressed as the functions with respect to the time. Experiments on the same eigine system are also carried out to prove the validity of theoretical study. Further, this study carried an experiment for improving transient response performance by injecting air into the inlet manifold under the rapid accelerating conditions. The effects of air injection on the response performances are also represented at varying conditions such as injection pressure, injection period, accelerating rate, accelerating time, engine speed and load.

  • PDF

A stochastic adaptive pushover procedure for seismic assessment of buildings

  • Jafari, Mohammad;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.477-492
    • /
    • 2018
  • Recently, the adaptive nonlinear static analysis method has been widely used in the field of performance based earthquake engineering. However, the proposed methods are almost deterministic and cannot directly consider the seismic record uncertainties. In the current study an innovative Stochastic Adaptive Pushover Analysis, called "SAPA", based on equivalent hysteresis system responses is developed to consider the earthquake record to record uncertainties. The methodology offers a direct stochastic analysis which estimates the seismic demands of the structure in a probabilistic manner. In this procedure by using a stochastic linearization technique in each step, the equivalent hysteresis system is analyzed and the probabilistic characteristics of the result are obtained by which the lateral force pattern is extracted and the actual structure is pushed. To compare the results, three different types of analysis have been considered; conventional pushover methods, incremental dynamic analysis, IDA, and the SAPA method. The result shows an admirable accuracy in predicting the structure responses.