• 제목/요약/키워드: Linear velocity control

검색결과 315건 처리시간 0.025초

굴삭기를 위한 레이저 스캐너 기반 확률 및 예견 작업 위험도 평가 알고리즘 개발 (Laser-Scanner-based Stochastic and Predictive Working-Risk-Assessment Algorithm for Excavators)

  • 오광석;박성렬;서자호;이근호;이경수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.14-22
    • /
    • 2016
  • This paper presents a stochastic and predictive working-risk-assessment algorithm for excavators based on a one-layer laser scanner. The one-layer laser scanner is employed to detect objects and to estimate an object's dynamic behaviors such as the position, velocity, heading angle, and heading rate. To estimate the state variables, extended and linear Kalman filters are applied in consideration of laser-scanner information as the measurements. The excavator's working area is derived based on a kinematic analysis of the excavator's working parts. With the estimated dynamic behaviors and the kinematic analysis of the excavator's working parts, an object's behavior and the excavator's working area such as the maximum, actual, and predicted areas are computed for a working risk assessment. The four working-risk levels are defined using the predicted behavior and the working area, and the intersection-area-based quantitative-risk level has been computed. An actual test-data-based performance evaluation of the designed stochastic and predictive risk-assessment algorithm is conducted using a typical working scenario. The results show that the algorithm can evaluate the working-risk levels of the excavator during its operation.

Aerodynamics of a cylinder in the wake of a V-shaped object

  • Kim, Sangil;Alam, Md. Mahbub;Russel, Mohammad
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.143-155
    • /
    • 2016
  • The interaction between two different shaped structures is very important to be understood. Fluid-structure interactions and aerodynamics of a circular cylinder in the wake of a V-shaped cylinder are examined experimentally, including forces, shedding frequencies, lock-in process, etc., with the V-shaped cylinder width d varying from d/D = 0.6 to 2, where D is the circular cylinder diameter. While the streamwise separation between the circular cylinder and V-shaped cylinder was 10D fixed, the transverse distance T between them was varied from T/D = 0 to 1.5. While fluid force and shedding frequency of the circular cylinder were measured using a load cell installed in the circular cylinder, measurement of shedding frequency of the V-shaped cylinder was done by a hotwire. The major findings are: (i) a larger d begets a larger velocity deficit in the wake; (ii) with increase in d/D, the lock-in between the shedding from the two cylinders is centered at d/D = 1.1, occurring at $d/D{\approx}0.95-1.35$ depending on T/D; (iii) at a given T/D, when d/D is increased, the fluctuating lift grows and reaches a maximum before decaying; the d/D corresponding to the maximum fluctuating lift is dependent on T/D, and the relationship between them is linear, expressed as $d/D=1.2+{\frac{1}{e}}T/D$; that is, a larger d/D corresponds to a greater T/D for the maximum fluctuating lift.

생물막 여과반응기를 이용한 고도질소 제거법의 개발 (Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage)

  • 정진우;김성원;津野洋
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 제11차 KACG 학술발표회 Crystalline Particle Symposium (CPS)
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

농업용 삼륜구동 전기자동차의 후방 속도 및 조향각에 기반한 운동학적 모델 (A Kinematic Model Based on the Rear Speed and Steering Angle of Three-Wheeled Agriculture Electric Vehicle)

  • 최원식;프라타마 판두 산디;수페노 데스티아니;변재영;이은숙;양지웅;키프 디마스 하리스 신;전연호;정성원
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.197-205
    • /
    • 2018
  • In this research, tricycle vehicle simulation based on multi-body environment has been introduced. Mathematical model of tricycle vehicle was developed. In this research the left and right wheel speed are calculated based on the rear steering angle and velocity. The kinematic model for the three - wheel drive system was completed and the results were analyzed using the actual vehicle drawings. Through simulink vehicle performance on linear and rotation movement were simulated. Using the mathematical model the control system can be applied directly to the tricycle vehicle. The simulation result shows that the proposed vehicle model is successfully represent the movement characteristics of the real vehicle. This model assists the vehicle developer to create the controller and understand the vehicle during the development process.

파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가 (Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device)

  • 이준호;신용균
    • 한국물환경학회지
    • /
    • 제35권5호
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.

선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어 (T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제59권1호
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

위상민감도를 이용한 선형구조물의 레벨셋 기반 형상 최적설계 (Level Set Based Shape Optimization of Linear Structures using Topological Derivatives)

  • 윤민호;하승현;김민근;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.9-16
    • /
    • 2014
  • 레벨셋 기법과 위상민감도를 이용하여 선형 탄성 구조물에 대하여, 초기 설계형상에 의존성이 없는 위상 및 형상 최적설계 기법을 개발하였다. 레벨셋 기법에서는 복잡한 위상 형상변화를 쉽게 다루기 위해 초기 영역은 고정한 채 레벨셋 함수로 표현되는 암시적 이동경계로 경계를 표현한다. 해밀턴-자코비(H-J) 방정식과 수치적으로 강건한 기법인 'up-wind scheme'은 컴플라이언스 목적함수를 최소화시키고 허용체적 제약조건을 만족시키면서, 초기 암시적 경계를 법선 속도장에 따라 최적의 형상으로 이끌어 낸다. 점근적인 정규화 개념에 근거하여, 구멍의 반지름을 0으로 접근시켜 형상 미분의 극한을 취한 위상민감도를 고려하였다. 최적조건으로부터 유도된 라그란지안의 감소 방향을 이용하여 H-J 방정식을 갱신하기 위한 속도장을 결정하였다. 개발한 방법에서는 위상민감도로부터 얻어지는 지표를 이용하여 구멍을 언제든지 어디에서나 생성가능하기 때문에 초기 구멍이 최적 형상을 얻기 위해 요구되지 않는다는 사실을 확인하였다. 또한 효율적인 최적화 과정을 위해서는 구멍 생성을 위한 조정변수의 적절한 선택이 중요함을 확인하였다.

갑상선기능항진증(甲狀線機能亢進症)에서 좌심실용적(左心室容積) 및 기능변화(機能變化)에 관한 연구(硏究) (Effects of Thyroid Hormone on Left Ventricular Volume and Function in Hyperthyroidism)

  • 이명철;고창순
    • 대한핵의학회지
    • /
    • 제17권2호
    • /
    • pp.1-17
    • /
    • 1983
  • The purpose of this study is to investigate the effects of thyroid hormone on the left ventricular(LV) volume arid function in man with untreated hyperthyroidism and to determine the effects of successful therapy for thyrotoxicosis on the ventricular pathophysiology. In the present study, equilibrium radionuclide cardiac angiography was performed and LV volume index, ejection phase indexes of LV performance, serum thyroid hormone levels and other hemodynamic parameters were measured in 28 normal subjects and 39 patients with hyperthyroidism before treatment and again every 4 weeks for the first 2 months after the initiation of effective therapy. The results obtained were as follows; 1) In the untreated hyperthyroid state heart rate, blood volume, cardiac index and stroke volume index($97{\pm}14$ beats/min, $73.5{\pm}11.8ml/kg,\;6.9{\pm}1.4\;l/min/m^2$ and $77.6{\pm}13.8ml/m^2$, respectively) were increased significantly compared to those in normal control($74{\pm}12beats/min$, $66.6{\pm}14.8ml/kg,\;3.8{\pm}1.2\;l/min/m^2$ and $56.6{\pm}13.2ml/m^2$ respectively). $(Mean{\pm}SD)$ 2) There was a significant increase in LV end-diastolic volume index in patients with hyperthyroidism ($30.5{\pm}7.5$ for hyperthyroid group compared to a normal control of $22.2{\pm}6.5$; p<0.001), whereas end-systolic volume index remained unchanged $9.6{\pm}3.6\;and\;8.8{\pm}3.3$ respectively).3) In patients with hyperthyroidism, LV ejection fraction was $70.0{\pm}5.6%$, fractional shortening $32.9{\pm}5.1%$, mean velocity of circumferential fiber shortening(mean Vcf) $1.34{\pm}0.31$ circ/sec and maximum ejection rate $3.47{\pm}0.80$. All the ejection phase indexes were significantly greater than those in normal control($65.2{\pm}5.7%,\;28.8{\pm}3.2%,\;0.88{\pm}0.37$ circ/see and $2.27{\pm}0.50$, respectively; p<0.001). 4) Effective therapy produced significant decrease in all the values of serum thyroid hormone concentrations(p<0.00l), hemodynamic parameters(p<0.001), end-diastolic volume index(p<0.01) and ejection phase indexes of LV contractility in patients with hyperthyroidism and after one to two months, when the patients were euthyroid, these measurements were in the range of normal. 5) A significant linear correlation between mean Vcf and serum thyroxine level(r=0.63, p<0.001) as well as between mean Vcf and serum triiodothyronine level(r=0.62, p<0.001) was found. The lesser degree of correlation was also noted between other ejection phase indexes and serum thyroid hormone concentrations. The results indicate that the major effects of excess thyroid hormone on the LV in human beings with hyperthyroidism are an enhancement of LV function and an increase in LV enddiastolic volume and that these effects cause predictable reversible cardiac alteration which are changed dramatically and immediately after effective therapy.

  • PDF

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.