• Title/Summary/Keyword: Linear velocity control

Search Result 314, Processing Time 0.027 seconds

A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping (능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구)

  • Lee Jin-Hyoung;Lee Young-Kwan;Lee Sung-Kun;Lee Suk-Han;Kim Youn-Jea;Kim Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.722-730
    • /
    • 2006
  • In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

The Effects of $PGF_2{\alpha}$ on Sexual Activity and Semen Collection Training (Prostaglandin $F2{\alpha}$ 투여가 수퇘지의 성행동과 정액 채취 훈련에 미치는 영향)

  • Hong, Joon-Ki;Ryu, Jae-Weon;Cho, Kyu-Ho;Kim, Myung-Jick;Park, Jun-Chul;Kim, In-Cheul;Jung, Il-Byung
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.29-32
    • /
    • 2009
  • Prostaglandin $F_2{\alpha}$ ($PGF_2{\alpha}$) can facilitate release of epinephrine from the adrenal gland. The objective was to extend these findings and determine the effects of $PGF_2{\alpha}$ on sexual activity and semen collection training in sexually inexperienced boars. Boars (n=32; $281{\pm}18$ days of age) were moved individually once weekly to a semen collection room equipped with an artificial sow. Before entering the semen collection room, boar received i.m. treatments of $PGF_2{\alpha}$ at doses of 5 (n=8), 10 (n=8), or 20 (n=8), and control boar (n=8) were not treated. Reaction time (elapsed time after entering collection pen until the start of mounting) for boars receiving 5mg ($3.3{\pm}0.9\;min$), 10mg ($3.3{\pm}0.8\;min$) $PGF_2{\alpha}$ was shorter (p<0.05) than for controls ($6.7{\pm}0.9min$). Duration of ejaculation (min) per session was longer (p<0.05) for $PGF_2{\alpha}$ (10 mg, 20 mg)-treated boars ($7.3{\pm}0.7\;min$, $6.9{\pm}0.7\;min$), compared to control ($3.4{\pm}0.8\;min$). The number of training session per boars was less (p=0.056) for $PGF_2{\alpha}$ 10mg-treated boars ($1.0{\pm}0.4$), compared to control ($2.0{\pm}0.4$). Semen characteristic such as volume, concentration, the number of total ejaculated sperm, were similar for $PGF_2{\alpha}$-treated and controls. There was no apparent difference on sperm movement characteristics (Mot: motility, VCL : curve linear velocity, VSL : straight line velocity, VAP : average path velocity, LIN : linearity) after semen preservation by collected with or without $PGF_2{\alpha}$ treatment. In summary, administration of $PGF_2{\alpha}$ in boars increased the sexual activity and facilitated the training boars to mount an artificial sow for semen collection, but did not affect semen characteristic.

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Development of Pressure Observer to Measure Cylinder Length of Harbor-Construction Robot (항만공사용 로봇의 실린더 길이 측정을 위한 압력 옵서버 개발)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.299-308
    • /
    • 2011
  • In this study, we develop a pressure observer to measure the cylinder length of a harbor-construction robot. For the robot control, sensors are required to measure the length of a hydraulic cylinder. The cylinder-position sensor is relatively expensive when the operating environment prohibits external approaches for the measurement of the cylinder position. LVDT or linear scales are usually mounted on the outside of the cylinder, which causes poor durability on a construction site. We use a pressure sensor to indirectly estimate the length of the cylinder. The pressure sensor is mounted inside a hydraulic valve box so that it is protected by the box and easy to waterproof for an underwater robot. By treating oil as a compressible fluid, we derive the nonlinear pressure dynamics as a function of the cylinder position, velocity, and pressure. The recursive least squares (RLS) algorithm is applied to identify the dynamic parameters, and the pressure observer estimates the cylinder position through the pressure acting on the head and the rod of the hydraulic cylinder. The position accuracy is relatively low, but it is acceptable for a construction robot that handles large armor stones.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.