• 제목/요약/키워드: Linear velocity control

검색결과 315건 처리시간 0.025초

20층 비선형 벤치마크 빌딩에 대한 자기유변유체 감쇠기의 최적위치 결정 (Optimal placement of MR dampers for 20-story nonlinear benchmark building)

  • 장종우;조상원;이인원;윤우현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.467-472
    • /
    • 2003
  • The objective of optimal placement of dampers for a structure is to maximize the effectiveness of the vibration control with the same number of dampers. While many optimal placement methods of linear viscous dampers have been proposed and used, there are only a few methods for MR dampers. Here some optimal location indices for MR dampers are proposed, which are similar to those for linear viscous dampers and show how large the structural responses on each floor we. Every time an additional MR damper is implemented, the optimal location index on each floor is measured, and then the next damper is installed on the floor with the maximum location index. In these sequential procedures, the peak interstory drift, the peak interstory velocity and the absolute acceleration of each floor are selected as the optimal location indeices. Four different earthquakes with various scales are loaded to the 20-story nonlinear benchmark building model (Otori et at. 2000, 2002). Passive On/Off algorithms are used in order to represent the control algorithm of MR dampers.

  • PDF

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석 (Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles)

  • 김중관;한종섭;김호영;한재흥
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험 (Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator)

  • 류근호;한재흥;이인
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF

항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가 (Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft)

  • 김동협;김상우
    • 항공우주시스템공학회지
    • /
    • 제13권4호
    • /
    • pp.66-73
    • /
    • 2019
  • 본 연구에서는 항공기 플랩 제어를 위한 선형 구동기의 기본 설계에 대한 구조 안전성을 평가하였다. 다물체 동역학 분석을 통해 선형 구동기의 기계적 운동을 이해하였고, 접촉 하중을 산출하여 유한요소해석 기반의 구조 분석에 적용하였다. 구조 분석에서는 선형 구동기의 설계 속도 조건에 대한 열, 정적 거동을 검토하였고, 구조적 안전성을 평가하였다. 또한 모드 해석을 수행하여 동적 거동을 분석하였다. 분석 결과, 모터가 225 rpm으로 작동 시 구동 로드는 약 5 mm/s로 병진 운동하였고, 기어 간 최대 32.83 N의 접촉 하중이 발생하였다. 한편, 최대 열 응력과 정 응력은 철의 항복강도의 약 1.57%, 78%로 발생하였고, 각 부품은 서로의 공진 주파수를 회피하였다. 따라서 제안된 선형 구동기의 기본설계는 구조적으로 안전하며, 공진에 대해 안정적임을 밝혔다.

끝단이 탄성 지지된 강체판의 최적진동제어 (Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges)

  • 이성기;윤신일;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발 (Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles)

  • 원문철;강연준;강병배
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF

Experiment Investigation on Fluid Transportation Performance of Propellant Acquisition Vanes in Microgravity Environment

  • Zhuang, Baotang;Li, Yong;Luo, Xianwu;Pan, Halin;Ji, Jingjing
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2014
  • The propellant acquisition vane (PAV) is a key part of a vane type surface tension propellant management device (PMD), which can manage the propellant effectively. In the present paper, the fluid transportation behaviors for five PAVs with different sections were investigated by using microgravity drop tower test. Further, numerical simulation for the propellant flow in a PMD under microgravity condition was also carried out based on VOF model, and showed the similar flow pattern for PAVs to the experiment. It is noted that the section geometry of PAVs is one of the main factors affecting the fluid transportation behavior of PMD. PAVs with bottom length ratio of 5/6 and 1/2 have larger propellant transportation velocity. Based on the experiments, there were two stages during the process of propellant transportation under microgravity environment: liquid relocation and steady transportation stage. It is also recognized that there is a linear correlation between liquid transportation velocity and relative time's square root. Those results can not only provide a guideline for optimization of new vane type PMDs, but also are helpful for fluid control applications in space environment.

전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법 (Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot)

  • 박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1817-1825
    • /
    • 2021
  • 전방향 모바일 로봇은 로봇의 방향을 바꿀 필요 없이 어떤 방향으로든 움직일 수 있어 여러 응용 분야에서 적용이 쉽고 뛰어난 기동성을 제공한다. 전방향 모바일 로봇은 마찰과 같은 비선형 동적 성분을 가지고 있어 정확히 모델링하기에 어렵다. 본 연구에서는 이러한 비선형 성분을 제거하기 위하여 모바일 로봇의 역 다이내믹과 적분 슬라이딩 모드 제어기법을 사용하여 모바일 로봇 시스템을 선형화하고, 제안된 제어기법의 최적 성능을 구현하기 위하여 유전알고리즘을 사용하여 위치 및 속도 이득을 최적화한다. 성능 평가 결과 유전알고리즘을 적용한 제어기법이 임의의 이득을 갖는 제어기법보다 뛰어난 성능을 나타내었다. 그리고 제안된 역 다이내믹과 적분 슬라이딩 모드 제어기법은 다른 제어기법에서도 적용될 수 있으며, 특히 선형제어시스템 설계에 유용하게 사용될 수 있다.

비전기술에 의한 모바일 로봇의 정밀 자세 제어 알고리즘 개발에 관한 연구 (A study on Development of Precise Orientation control Algorithm of the Mobile Robot Based Vision Technology)

  • 심현석;김태관
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.129-138
    • /
    • 2015
  • This study describe a new method to control posture and velocity for a wheeled mobile robot using visual feedback control method with a position based visual feedback. To slove the problem of vibration phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed visual servo control law introduces the fusion function based on a blending function. The chattering problem and rapid motion of the mobile robot can be eliminated. And we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture control law using visual servoing is verified by a theoretical analysis and simulation and experimental results.