• 제목/요약/키워드: Linear transfer

검색결과 1,138건 처리시간 0.033초

불규칙파중 1점계류 선바의 거동해석에 관한 연구 (A Study on the Motion of a Single Point Moored Ship in Irregular Waves)

  • 이승건;조효제;강동훈
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.55-61
    • /
    • 2003
  • 계류된 선박의 시뮬레이션을 위해 조종방정식을 사용하였고, 파 중의 선박에 가해지는 파강제력은 3차원 특이점 분포법에서 얻어진 주파수 전달함수로부터 시간영역해석법을 적용하였다. 운동을 유발하는 입사파의 주기와 동일한 선형 파강제력과 성분파 주파수의 차이에 기인하는 장주기 표류력을 외력항에 고려하였다. 규칙파와 불규칙 중에서의 선박의 거동을 비교하여 계류 중 선박에 발생할 수 있는 SLEW MOTION에 불규칙파 및 비선형 파강제력이 미치는 영향을 고찰하였다.

무선 전력공급 기반 협력적 멀티홉 전송 방법 (Wireless-Powered Cooperative Multihop Transmission Method)

  • 최현호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.499-502
    • /
    • 2018
  • 선형 네트워크 토폴로지에서 노드간 협력을 이용한 무선 전력공급 기반 멀티홉 전송 방식을 제안한다. 제안 프로토콜은 멀티홉 경로의 생존시간의 최대화를 목적으로 멀티홉 노드의 생존시간을 동일하게 맞추어 주도록 노드별 에너지 전송 시간을 결정한다. 각 노드의 생존시간을 동일하게 만들기 위하여 새떼가 동일 속도로 날아다니는 행동양식을 모방한 flocking 알고리즘을 적용하여 노드의 생존시간을 지역적으로 분산 평균화 시킨다. 시뮬레이션을 통하여 제안 알고리즘이 각 노드의 생존시간을 모두 동일하게 만들어 전체 경로의 생존시간을 최대화할 수 있음을 보여준다.

  • PDF

송전용 무효전력보상기의 제어시스템 설계와 성능해석 (Control System Design and Performance Analysis for Transmission Static Compensator)

  • 한병문;최대길
    • 전력전자학회논문지
    • /
    • 제3권1호
    • /
    • pp.77-84
    • /
    • 1998
  • 본 논문에서는 비선형상태피드백을 적용한 무효전력보상기의 제어시스템을 설계하여 시뮬레이션과 축소모형 실험에 의한 성능해석에 관해 기술하였다. 무효전력 보상기의 수리모형을 3상 등가회로와 대표적인 동작점에 대한 상태방정식을 이용하여 도출하였으며, 비선형 상태피드백을 고려한 무효전력 보상기의 동특성을 표현하는 전달함수를 유도하였다. 또한 근궤적을 이용한 시스템 안정도 해석을 실시하여 제어시스템 설계를 실시하였다. 고안된 제어시스템의 성능해석은 EMTP를 이용한 시뮬레이션과 축소모형 실험을 통해 검증하였는데, 검증결과 고안된 제어시스템은 송전계통의 무효전력보상에 우수한 성능을 갖음이 확인되었다.

Lipid Film에 수식된 헤모글로빈의 전기화학적 특성과 $H_{2}O_{2}$응답특성 (Direct electrochemistry of hemoglobin at carbon electrode modified with lipid film and its application as a $H_{2}O_{2}$ sensor)

  • 이동윤;박상현;최용성;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.93-94
    • /
    • 2006
  • In this research, the enhancement of electron-transfer activity of hemoglobin (Hb) in dodecanoic acid film was investigated for the first time. This type of composite film was made on glassy carbon electrode by casting method. Cyclic voltammetric result of the modified electrode displays a well defined redox peaks which was attributed to the direct electrochemical response of Rb. Our results illustrate that Rb exchange electrons directly with electrode and exhibits the characteristics of peroxidase. When we apply this modified electrode as a biosensor, it gives excellent performances in the electrocatalytic reduction of hydrogen peroxide ($H_{2}O_{2}$). Through the optimal conditions, the proposed biosensor shows the linear range for H2O2 determination was from $1{\times}10^{-5}$ to $1.25{\times}10^{-4}mol/L$ with a detection limit of $1{\times}10^{-7}mol/L$. The biosensor retained more than 90% of the initial response after 14 days.

  • PDF

Excitation Energy Migration in Multiporphyrin Arrays

  • Hwang, In-Wook;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.19-31
    • /
    • 2005
  • During the last decade, the exploration of nanoscale device and circuitry based on molecules has gained increasing interest. In parallel with this, considerable effort is being devoted to the development of molecular photonic/electronic materials based on various porphyrin arrays. This involves light as an input/output signal and excitation energy migration as a mechanism for signal transmission. Absorption of a photon at the light collector end of the porphyrin array yields the excited state, which migrates among the intervening pigments until reaching the emitter, whereupon another photon is emitted. As a consequence, it is relevant to understand the excitation energy transfer (EET) processes occurring in various forms of porphyrin arrays for the applications as artificial light harvesting arrays and molecular photonic/electronic wires. Since the excitonic (dipole) and electronic (conjugation) couplings between the adjacent porphyrin moieties in porphyrin arrays govern the EET processes, we have characterized the EET rates of various forms of multiporphyrin arrays (linear, cyclic, and box) based on various time-resolved spectroscopic measurements. We believe that our observations provide a platform for further development of molecular photonic/electronic materials based on porphyrin arrays.

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구 (Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade)

  • 윤원남;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy

  • Kim, Yejin;Kim, Jinsung;Cho, Seungryong
    • 한국의학물리학회지:의학물리
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Hadron therapy, such as carbon and helium ions, is increasingly coming to the fore for the treatment of cancers. Such hadron therapy has several advantages over conventional radiotherapy using photons and electrons physically and clinically. These advantages are due to the different physical and biological characteristics of heavy ions including high linear energy transfer and Bragg peak, which lead to the reduced exit dose, lower normal tissue complication probability and the increased relative biological effectiveness (RBE). Despite the promising prospects on the carbon ion radiation therapy, it is in dispute with which bio-mathematical models to calculate the carbon ion RBE. The two most widely used models are local effect model and microdosimetric kinetic model, which are actively utilized in Europe and Japan respectively. Such selection on the RBE model is a crucial issue in that the dose prescription for planning differs according to the models. In this study, we aim to (i) introduce the concept of RBE, (ii) clarify the determinants of RBE, and (iii) compare the existing RBE models for carbon ion therapy.