• 제목/요약/키워드: Linear sweep voltammetry

검색결과 90건 처리시간 0.032초

Linear Sweep Voltammetry와 UV-VIS Spectrophotometry를 이용한 게르마늄 분석 (The Determination of Germanium(IV) by Linear Sweep Voltammetry and UV-VIS Spectrophotometry)

  • 최원형;이진식;김재수;김도훈
    • 분석과학
    • /
    • 제5권1호
    • /
    • pp.7-15
    • /
    • 1992
  • 게르마늄을 Phenylfluorone과 착물을 만들어 과염소산 지지전해질에서 Linear Sweep Voltammetry에 의해 정량하고, 염산용액 중에서 형성된 착물을 UV-VIS Spectrophotometry로 정량한 결과를 비교하였다. 이때 전기화학적인 방법의 경우 정량범위가 $2.5{\sim}80{\mu}g/L$이었고, 분광광도법의 경우는 $10{\sim}300{\mu}g/L$이었다.

  • PDF

Semi-Circular Potential Sweep Voltammetry: Electrochemically Quasi-Reversible System

  • Park, Kyungsoon;Hwang, Seongpil
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.379-383
    • /
    • 2020
  • The novel voltammetry using a semi-circular potential wave for quasi-reversible charge transfer system on electrode is theoretically investigated. Compared with conventional voltammetry based on linear sweep such as linear sweep voltammetry (LSV), semi-circular potential sweep voltammetry (SCV) may decrease the charging current outside the center of potential range and increase the faradaic current at the midpoint due to variable scan rate. In this paper, we investigate the system based on macroelectrode where simple 1 dimensional (1 D) diffusion system is valid with various charge transfer rate constant (k0). In order to observe the amplification at midpoint, voltammetric response with different midpoint ranging from -200 mV to 200 mV are studied. SCVs shows both the shift of peak potential and the amplification of peak current for quasi-reversible electrode reaction while only higher peak current is observed for reversible reaction. Moreover, the higher current at midpoint enable the amplification of current at low overpotential region which may assist the determination of onset potential as a figure-of-merit in electrocatalyst.

미소전극어레이형 DNA칩을 이용한 유전자의 전기화학적 검출 (Eletrochemical Detection of Gene using Microelectrode-array DNA Chip)

  • 최용성;권영수;;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.729-737
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

고분자전해질연료전지에서 선형주사전압전류측정법(LSV)의 분석방법에 따른 수소투과전류밀도 비교 (Comparison of Hydrogen Crossover Current Density by Analysis Method of Linear Sweep Voltammetry(LSV) in Proton Exchange Membrane Fuel Cells)

  • 오소형;황병찬;이무석;이동훈;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.151-155
    • /
    • 2018
  • 고분자전해질 연료전지(PEMFC)의 고분자막 열화정도는 주로 수소투과전류밀도로 평가한다. 수소투과전류밀도는 선형주사전압전류측정법(Linear Sweep Voltammetry, LSV)으로 측정하는데 DOE프로토콜과 NEDO프로토콜이 분석방법에 차이가 있다. 본 연구에서는 PEMFC 구동 및 가속 열화 시험 과정에서 두 프로토콜을 적용해 수소투과 전류밀도를 비교하였다. DOE 방법에 의한 LSV 방법에서는 주사속도(scan rate) 변화가 수소투과 전류밀도에 영향을 주지만 NEDO 방법에서는 주사속도가 수소투과전류밀도에 영향을 주지 않았다. 고분자막 가습/건조 15,000사이클 평가과정에서 DOE 방법은 막의 열화를 민감하게 측정하였으나 NEDO방법은 DOE방법에 비해 막의 열화가 덜 민감하게 나타났다.

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.

$HNO_3$ 전해액이 Cu 표면에 미치는 영향 (Effect of copper surface to $HNO_3$ electrolyte)

  • 박성우;한상준;이영균;이우선;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.123-123
    • /
    • 2008
  • 본 논문에서는 Cu의 ECMP 적용을 위해 $HNO_3$ 전해액의 active, passive, transient, trans-passive 영역을 I-V 특성 곡선을 통해 알아보았고, LSV (Linear sweep voltammetry)와 CV (Cyclic voltammetry)법을 통하여 전기화학적 특성을 비교 분석하였다.

  • PDF

Determination of Ag(I) at a Chemically Modified Electrode Based on 2-Imino-cyclopentane-dithiocarboxylic Acid

  • Jeong-Sik Yeom;Mi-Sook Won;Sung-Nak Choi;Yoon-Bo Shim
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권3호
    • /
    • pp.200-205
    • /
    • 1990
  • Chemically modified electrodes(CMEs), based on 2-imino-1-cyclopentane-dithiocarboxylic acid (icdc) containing carbon paste, have been characterized using cyclic voltammetric techniques. Ag(I) was chemically deposited on the CMEs, and voltammograms were obtained with the electrode in a separate buffer solution. The CME surface can be regenerated with exposure to acid and reused for deposition. In 10 deposition/measurement/regenerate cycles, the linear response have been reproduced up to $1{\times}10^{-6}$ M in linear sweep voltammetry and 1${\times}$10-8 M in differential pulse voltammetry with relative standard deviation of 5.2% and 12.4%, respectiveiy. The sensitivity increased with deposition time and scanning rate, and detection limit was $1{\times}10^{-7}M\;and\;1{\times}10^{-9}M$ at 20 minutes deposition in the linear sweep voltammetry and differential pulse voltammetry, respectively. The presence of some metal ions does not influence the silver ion response. Satisfactory results were obtained for the analysis of the silver ion for a variety of reference materials without interference of Hg ion at the condition of pH = 5-6.

$KNO_3$$HNO_3$ 전해액이 Cu에 미치는 영향 (Effect of copper surface to $HNO_3$ and $KNO_3$ electrolyte)

  • 서용진;한상준;박성우;이영균;이성일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.486-486
    • /
    • 2009
  • In this paper, the current-voltage (I-V) curves, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were employed to evaluate the effect of electrolyte concentration on the electrochemical reaction trend. From the I-V curve, the electrochemical states of active, passive, transient and trans-passive could be characterized. And then, we investigated that how this chemical affect the process of voltage-induced material removal in electrochemical mechanical polishing (ECMP) of Copper. The scanning electron microscopy (SEM) and energy dispersive spectroscopy EDS) analyses were used to observe the surface profile. Finally, we monitored the oxidation and reduction process of the Cu surface by the repetition of anodic and cathodic potential from cyclic voltammetry (CV) method in acid- and alkali-based electrolyte. From these analyses, it was important to understand the electrochemical mechanisms of the ECMP technology.

  • PDF

전기화학적 방법에 의한 유전자의 검출 (Genomic Detection using Electrochemical Method)

  • 최용성;이경섭;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, a microelectrode away DNA chip was fabricated on glass slide using photolithography technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by DNA arrayer utilizing the affinity between gold and sulfu. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Cyclic voltammetry in 5mA ferricyanide/ferrocyanide solution at 100 mV/s confirmed the immobilization of probe DNA on the gold electrodes. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.346-351
    • /
    • 2020
  • The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.