• Title/Summary/Keyword: Linear structural relations

검색결과 80건 처리시간 0.02초

구조방정식을 이용한 도시부 4지 신호교차로의 사고원인 분석 (A Causational Study for Urban 4-legged Signalized Intersections using Structural Equation Method)

  • 오주택;이상규;허태영;황정원
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.121-129
    • /
    • 2012
  • PURPOSES : Traffic accidents at intersections have been increased annually so that it is required to examine the causations to reduce the accidents. However, the current existing accident models were developed mainly with non-linear regression models such as Poisson methods. These non-linear regression methods lack to reveal complicated causations for traffic accidents, though they are right choices to study randomness and non-linearity of accidents. Therefore, to reveal the complicated causations of traffic accidents, this study used structural equation methods(SEM). METHODS : SEM used in this study is a statistical technique for estimating causal relations using a combination of statistical data and qualitative causal assumptions. SEM allow exploratory modeling, meaning they are suited to theory development. The method is tested against the obtained measurement data to determine how well the model fits the data. Among the strengths of SEM is the ability to construct latent variables: variables which are not measured directly, but are estimated in the model from several measured variables. This allows the modeler to explicitly capture the unreliability of measurement in the model, which allows the structural relations between latent variables to be accurately estimated. RESULTS : The study results showed that causal factors could be grouped into 3. Factor 1 includes traffic variables, and Factor 2 contains turning traffic variables. Factor 3 consists of other road element variables such as speed limits or signal cycles. CONCLUSIONS : Non-linear regression models can be used to develop accident predictions models. However, they lack to estimate causal factors, because they select only few significant variables to raise the accuracy of the model performance. Compared to the regressions, SEM has merits to estimate causal factors affecting accidents, because it allows the structural relations between latent variables. Therefore, this study used SEM to estimate causal factors affecting accident at urban signalized intersections.

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei;Hazhar Habibi
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.621-633
    • /
    • 2023
  • Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석 (Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members)

  • 연정흠;이제일
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.95-104
    • /
    • 2002
  • 고강도 PSC 콘크리트 휨부재의 비선형 수치해석을 위해 적층법과 설계기준에 의한 비선형 모멘트 -곡률 관계의 계산방법이 제안되었다. 제안된 수치해석에 의한 모멘트-곡률 관계와 처짐계산을 위한 비선형 수치해석 과정에 의한 계산결과는 해석적인 방법에 의한 모멘트-곡률 관계 그리고 기존의 고강도 PSC 콘크리트 휨부재에 대한 실험결과와 비교되었다. 이 논문의 적층법에 의한 에너지흡수율은 강도설계법과 CEB-FIP 제안식보다 약 30%크게 계산되었다. 적층법에 의한 극한하중과 외부일은 각각 실험결과의 92%와 85%로 안전하게 계산되었으며, 강도설계법은 97%와 122%로 극한하중에 대해서는 안전하나 외부일은 과대 평가되었다. CEB-FIP 제안식은 극한하중과 외부일에서 실험결과의 113% 와 173%로 고강도 콘크리트에 대한 극한변형률 0.0035의 적용에 문제가 있었다 제안된 비선형 수치해석 과정은 고강도 PS 콘크리트 휨부재의 거동을 극한상태까지 안정적으로 해석할 수 있었으며, 극한하중의 80%가지 하중-처짐 관계와 균열의 전파정도의 계산결과는 실험결과와 유사하였다

Nonparametric modeling of self-excited forces based on relations between flutter derivatives

  • Papinutti, Mitja;Cetina, Matjaz;Brank, Bostjan;Petersen, Oyvind W.;Oiseth, Ole
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.561-573
    • /
    • 2020
  • Unsteady self-excited forces are commonly represented by parametric models such as rational functions. However, this requires complex multiparametric nonlinear fitting, which can be a challenging task that requires know-how. This paper explores the alternative nonparametric modeling of unsteady self-excited forces based on relations between flutter derivatives. By exploiting the properties of the transfer function of linear causal systems, we show that damping and stiffness aerodynamic derivatives are related by the Hilbert transform. This property is utilized to develop exact simplified expressions, where it is only necessary to consider the frequency dependency of either the aeroelastic damping or stiffness terms but not both simultaneously. This approach is useful if the experimental data on aerodynamic derivatives that are related to the damping are deemed more accurate than the data that are related to the stiffness or vice versa. The proposed numerical models are evaluated with numerical examples and with data from wind tunnel experiments. The presented method can evaluate any continuous fitted table of interpolation functions of various types, which are independently fitted to aeroelastic damping and stiffness terms. The results demonstrate that the proposed methodology performs well. The relations between the flutter derivatives can be used to enhance the understanding of experimental modeling of aerodynamic self-excited forces for bridge decks.

선형구조방정식을 이용한 의복착용쾌적감 영향요인 분석 (An Analysis of Effective Variables on Clothing Wear Comfort Using Linear Structural Equation)

  • 이은주;조정숙;이정주;최종명;조길수
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1997년도 한국감성과학회 연차학술대회논문집
    • /
    • pp.47-52
    • /
    • 1997
  • This study was carried out to investigate effects of fabric properties and the changes of microclimates on comfort sensations and to identify effective varuables on clothing wear comfort sensations. A wied range of nontreated and functionally treated woven fabrics, knits, and nonwoven fabrics and test garments made of them were used as specimens. Linear structural equation was used to analyze causal relation among the variables on a path diagram. The results were as follows: 1. Almost of causal relations among variables were significant excdpt the effects of fabric properties including air permeability and water-vapor permebility on the changes of microclimate temperature. 2. Fabric properties were most effective variables on clothing wear comfort sensations including thermal sensation, subjeceive wettedness, and overall comfort and therefore comfort sensations and fabric properties were identified for improving clothing comfort.

  • PDF

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

학교의 조직효과성에 대한 LISREL 모형

  • 송재기;송명언
    • Journal of the Korean Data and Information Science Society
    • /
    • 제5권2호
    • /
    • pp.117-128
    • /
    • 1994
  • 본 연구에서는 설정된 조직목표를 효율적으로 달성하기 위한 여러 행정과정변수와 조직의 보편적 특성인 관료성변수를 선정하여 이 변수들이 조직의효과성에 미치는 영향을 확인코자 했으며 이를 통하여 학교 조직의 효과성에 대한 포괄적인 정보를 제공함이 그 목적이라 할 수 있다. 그래서 독립변수로 행정과정(과업구조 인화관계성, 의사소통, 의사결정)과 관료성을, 종속변수로 조직의 효과성(직무만족, 조직적응, 조직생산성)을 선정하였으며, LISREL(Linear Structural Relations)모형을 이용하여 조직의 행정과정 및 관료성이 조직의 효과성에 미치는 영향을 조사하였다.

  • PDF