• Title/Summary/Keyword: Linear regression analysis

Search Result 2,903, Processing Time 0.026 seconds

A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis (비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

ILL-CONDITIONING IN LINEAR REGRESSION MODELS AND ITS DIAGNOSTICS

  • Ghorbani, Hamid
    • The Pure and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.71-81
    • /
    • 2020
  • Multicollinearity is a common problem in linear regression models when two or more regressors are highly correlated, which yields some serious problems for the ordinary least square estimates of the parameters as well as model validation and interpretation. In this paper, first the problem of multicollinearity and its subsequent effects on the linear regression along with some important measures for detecting multicollinearity is reviewed, then the role of eigenvalues and eigenvectors in detecting multicollinearity are bolded. At the end a real data set is evaluated for which the fitted linear regression models is investigated for multicollinearity diagnostics.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS (원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구)

  • Jo, Myung-Hee;Lee, Kwang-Jae;Kim, Woon-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study used four theoretical models, such as two-point linear model, linear regression model, quadratic regression model and cubic regression model which are presented from The Ministry of Science and Technology, for extraction of urban surface temperature from Landsat TM band 6 image. Through correlation and regression analysis between result of four models and AWS(automatic weather station) observation data, this study could verify spatial distribution characteristic of urban surface temperature using GIS spatial analysis method. The result of analysis for surface temperature by landcover showed that the urban and the barren land belonged to the highest surface temperature class. And there was also -0.85 correlation in the result of correlation analysis between surface temperature and NDVI. In this result, the meteorological environmental characteristics wuld be regarded as one of the important factor in urban planning.

  • PDF

Local linear regression analysis for interval-valued data

  • Jang, Jungteak;Kang, Kee-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.365-376
    • /
    • 2020
  • Interval-valued data, a type of symbolic data, is given as an interval in which the observation object is not a single value. It can also occur frequently in the process of aggregating large databases into a form that is easy to manage. Various regression methods for interval-valued data have been proposed relatively recently. In this paper, we introduce a nonparametric regression model using the kernel function and a nonlinear regression model for the interval-valued data. We also propose applying the local linear regression model, one of the nonparametric methods, to the interval-valued data. Simulations based on several distributions of the center point and the range are conducted using each of the methods presented in this paper. Various conditions confirm that the performance of the proposed local linear estimator is better than the others.

The health effects of low blood lead level in oxidative stress as a marker, serum gamma-glutamyl transpeptidase level, in male steelworkers

  • Su-Yeon Lee;Yong-Jin Lee;Young-Sun Min;Eun-Chul Jang;Soon-Chan Kwon;Inho Lee
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.34.1-34.13
    • /
    • 2022
  • Background: This study aimed to investigate the association between lead exposure and serum gamma-glutamyl transpeptidase (γGT) levels as an oxidative stress marker in male steelworkers. Methods: Data were collected during the annual health examination of workers in 2020. A total of 1,654 steelworkers were selected, and the variables for adjustment included the workers' general characteristics, lifestyle, and occupational characteristics. The association between the blood lead level (BLL) and serum γGT level was investigated by multiple linear and logistic regression analyses. The BLL and serum γGT values that were transformed into natural logarithms were used in multiple linear regression analysis, and the tertile of BLL was used in logistic regression analysis. Results: The geometric mean of the participants' BLLs and serum γGT level was 1.36 ㎍/dL and 27.72 IU/L, respectively. Their BLLs differed depending on age, body mass index (BMI), smoking status, drinking status, shift work, and working period, while their serum γGT levels differed depending on age, BMI, smoking status, drinking status, physical activity, and working period. In multiple linear regression analysis, the difference in models 1, 2, and 3 was significant, obtaining 0.326, 0.176, and 0.172 (all: p < 0.001), respectively. In the multiple linear regression analysis stratified according to drinking status, BMI, and age, BLLs were positively associated with serum γGT levels. Regarding the logistic regression analysis, the odds ratio of the third BLL tertile in models 1, 2, and 3 (for having an elevated serum γGT level within the first tertile reference) was 2.74, 1.83, and 1.81, respectively. Conclusions: BLL was positively associated with serum γGT levels in male steelworkers even at low lead concentrations (< 5 ㎍/dL).

Correlation Between the Point-Load Strength and the Uniaxial Compressive Strength of Korean Granites (국내 화강암의 점하중강도와 일축압축강도간의 상관분석)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study presents the results of a regression analysis of the point-load strength ($I_{s(50)}$) and the uniaxial compressive strength (UCS) of granites in Korea. The regression was carried out for three cases using the least-squares method, reclassifying the granite samples based on their physical properties. The first regression analysis through the origin according to the weathering grade did not give a result with a sufficient degree of confidence, due to the small number of samples. However, the general trend of the correlation between UCS and $I_{s(50)}$according to weathering grade shows that the slope of the linear regression for weathered granite is steeper than that for fresh granite. The second analysis was a simple linear regression for all the granite samples using the least-squares method as well as a linear regression using the bootstrap resampling method in order to increase the confidence level and the accuracy of the regression results. The third regression considered the average strength of granite groups reclassified according to physical properties. These linear regression analyses yielded linear regression equations with slopes of 14 and small standard deviations being similar to values reported in previous studies on Korean granites, but whose intercept values range from 16 to 43 and have a larger standard deviation than those of the present study. In conclusion, it would be advisable to estimate UCS from $I_{s(50)}$, considering the error range derived from the deviation of the regression equations.