본 논문에서는 음성신호를 개선할 목적으로 잡음으로 오염된 음성신호로부터 잡음성분을 제거하기 위한 위너 필터를 사용한 잡음제거 알고리즘을 제안한다. 제안한 알고리즘은 먼저 잡음 복원 및 제거 방법에 기초하여 잡음으로 오염된 신호로부터 각 프레임에서 백색잡음의 잡음 스펙트럼을 제거한다. 또한 본 알고리즘은 선형예측 분석 방법에 기초한 위너 필터를 사용하여 음성신호를 강조한다. 본 실험에서는 일본 남성화자에 의한 음성과 잡음데이터를 사용하여 본 알고리즘의 실험 결과를 나타낸다. 백색잡음에 의하여 오염된 음성신호에 대하여 스펙트럼 왜곡률 척도를 사용하여 본 알고리즘이 유효하다는 것을 확인한다. 실험으로부터 백색잡음에 대하여 이전의 위너 필터와 비교하여 최대 4.94 dB의 출력 스펙트럼 왜곡률이 개선된 것을 확인할 수 있었다.
본 논문은 소규모 시스템에 적용 가능한 한국어 문자-음성 변환 시스템의 설계 및 구현에 대한 연구를 목적으로 한다. 본 논문에서 채택한 음성합성 방법은 파라메터 합성법으로서 LPC(linear Predictive Coding)계열의 PARCOR(PARtial autoCORrelation) 계수를 음향 파라메터로 사용하였으며, 음성합성 단위로는 가장 기본적인 단위인 음소를 채택하였다. 합성 파라메터로는 유성음의 경우 PARCOR계수, 피치, 진폭을 무성음의 경우 잔차신호와 PARCOR계수를 사용하였다. 특히 무성음의 경우 LPC합성시 음질이 떨어진다는 단점이 있었으나, 본 논문에서는 LPC분석시 얻어지는 잔차신호를 무성음의 여기신호로 사용하여 단어 단위의 합성에서 60%의 이해도를 얻을 수 있었다. 합성결과 단어 단위의 합성에 적용 가능하였고, 문장단위의 합성을 위해서는 음소 지속시간 조절에 대한 연구가 진행되어야 할것이다. 본 논문의 구현환경으로는 486 PC상에서 음성의 입,출력을 위해 70[Hz]-4.5[KHz] 대역통과 필터와 증폭기, 그리고 TMS320C30 디지털 신호처리 프로세서를 장착한 DSP 보드를 사용하였다.
In this paper, a Bayesian classifier based on PCA (principle component analysis) is proposed to classify underwater transient signals using $16^{th}$ order LPC (linear predictive coding) coefficients as feature vector. The proposed classifier is composed of two steps. The mechanical signals were separated from biological signals in the first step, and then each type of the mechanical signal was recognized in the second step. Three biological transient signals and two mechanical signals were used to conduct experiments. The classification ratios for the feature vectors of biological signals and mechanical signals were 94.75% and 97.23%, respectively, when all 16 order LPC vector were used. In order to determine the effect of underwater noise on the classification performance, underwater ambient noise was added to the test signals and the classification ratio according to SNR (signal-to-noise ratio) was compared by changing dimension of feature vector using PCA. The classification ratios of the biological and mechanical signals under ocean ambient noise at 10dB SNR, were 0.51% and 100% respectively. However, the ratios were changed to 53.07% and 83.14% when the dimension of feature vector was converted to three by applying PCA. For correct, classification, it is required SNR over 10 dB for three dimension feature vector and over 30dB SNR for seven dimension feature vector under ocean ambient noise environment.
본 논문에서는 남성화자 혹은 여성화자인지를 구분하는 성별인식 알고리즘을 제안한다. 본 논문에서는 남성화자와 여성화자의 특징벡터를 분석하며, 이러한 남녀의 특징벡터를 이용하여 신경회로망에 의한 제안한 성별인식에 대한 인식실험을 수행한다. 신경회로망의 입력신호로 사용한 특징벡터로는 10차의 LPC 켑스트럼 계수, 12차의 LPC 켑스트럼 계수, 12차의 FFT 켑스트럼 및 1차의 RMS, 12차의 LPC 켑스트럼 및 8차의 FFT 스펙트럼들이다. 본 실험에서는 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용하여 20-20-2의 네트워크에 의하여 신경회로망이 학습되었다. 실험결과, 남성화자에 대하여 학습 시에는 평균 99.8%, 여성화자에 대해서는 평균 96.5%의 성별인식률이 구해졌다.
Background and Objectives : Conditions such as muscle atrophy, stretching of strap muscles, and continued craniofacial growth factors have been cited as contributing to the changes observed in the vocal tract structure and function in elderly speakers. The purpose of the present study is to compare F$_1$ and F$_2$ frequency levels in elderly and young adult male and female speakers producing a series of vowels ranging from high-front to low-back placement. Material and Methods : The subjects were two groups of young adults(10 males, 10 females, mean age 21 years old range 19-24 years) and two groups of elderly speakers(10 males, 10 females, mean age 67 years : range 60-84 years). Each subject participated in speech pathologist to be a speaker of unimpared standard Korean. The headphone was positioned 2 cm from the speakers lips. Each speaker sustained the five vowels for 5 s. Formant frequency measures were obtained from an analysis of linear predictive coding in CSL model 4300B(Kay co). Results : Repeated measure AVOVA procedures were completed on the $F_1$ and $F_2$ data for the male and female speakers. $F_2$ formant frequency levels were proven to be significantly lower fir elderly speakers. Conclusions : We presume $F_2$ vocal cavity(from the point of tongue constriction to lip) lengthening in elderly speakers. The research designed to observe dynamic speech production more directly will be needed.
본 연구에서는 비선형 지속 모음 모델링을 위한 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 소개하고 분석하였다. 비주기적인 파형 특성을 갖는 양성 후두 질환자 43명의 지속 모음을 대상으로 한 실험에서 제안된 비선형 합성기는 거의 완벽하게 혼란한 지속 모음을 생성하고 선형 예측 코딩은 할 수 없는 주파수 변동과 같은 자연스러운 음의 특성 또한 보존할 수 있었다. 하지만 일부 모음의 합성 결과 실제 원음과 다른 차이점을 보였다. 이러한 결과들은 단일 밴드 모델이 음의 고주파 성분을 조정, 분해 못하기 때문에 발생한 것이라 가정된다. 그러므로 웨이블릿 필터 뱅크를 이용한 멀티 밴드 모델을 단일 밴드 모델과 대치하여 실험을 수행한 결과 향상된 안정성을 보였다. 결과적으로 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법은 성공적으로 원음에 가까운 합성음을 생성할 수 있다는 것을 확인 할 수 있었다.
수중천이신호는 복잡하고 시변, 비선형 및 짧은 지속성의 특성을 지니고 있어서 기준패턴으로 모델링하기가 어렵다. 본 논문에서는 이러한 신호들을 프레임간의 중첩을 허용하는 일정한 짧은 신호로 잘라서 분석한다. 더빈 알고리듬을 이용하여 20차의 선형예측계수(LPC)를 프레임마다 추출하여 2층 은닉신경망회로의 입력신호로 사용한다. 추출된 선형예측계수들의 65%는 신경망구조의 학습에 이용되고 35%는 시험용 입력신호로 사용된다. 고래소리 분류에 사용된 고래 종류는 대왕고래, 들쇠고래, 귀신고래, 혹등고래, 밍크고래, 북방긴수염고래 등이다. 결과적으로 이러한 시험용의 신호들로부터 83%이상의 고래 소리 평균 분류율을 얻을 수 있었다.
The formants of the 9 Korean standard vowels(which used by the average people of Seoul, central-area of the Korean peninsula) were measured by analysis with the linear predictive coding(LPC) and fast Fourier transform(FFT). The author already had reported the constriction area for the Korean standard vowels, and with the existing data, the distance from glottis to the constriction area in the vocal tract of each vowel was newly measured with videovelopharyngograms and lateral Rontgenograms of the vocal tract. We correlated the formant frequencies with the distance from glottis to the constriction area of the vocal tract. Also we tried to correlate the formant frequencies with the position of tongue in the vocal tract which is divided into 2 categories : The position of tongue in oral cavity by the distance from imaginary palatal line to the highest point of tongue and the position in pharyngeal cavity by the distance from back of tongue to posterior pharyngeal wall. This study was performed with 10 adults(male : 5, female : 5) who spoke primary 9 Korean standard vowels. We had already reported that the Korean vowel [i], [e], $[{\varepsilon}]$ were articulated at hard palate level, [$\dot{+}$], [u] were at soft palate level, [$\wedge$] was at upper pharynx level and the [$\wedge$], [$\partial$], [a] in a previous article. Also we had noted that the significance of pharyngeal cavity in vowel articulation. From this study we have concluded that ; 1) The F$_1$ is related with the oral cavity articulated vowel [i, e, $\varepsilon$, $\dot{+}$, u]. 2) Within the oral cavity articulated vowel [i, e, $\varepsilon$, $\dot{+}$, u] and the upper pharynx articulated vowel [o], the F$_2$ is elevated when the diatance from glottis to the constriction area is longer. But within the lower pharynx articulated vowel [$\partial$, $\wedge$, a], the F$_2$ is elevated when the distance from glottis to the constriction area is shorter. 3) With the stronger tendency of back-vowel, the higher the elevation of the F$_1$ and F$_2$ frequencies. 4) The F$_3$ and F$_4$ showed no correaltion with the constriction area nor the position of tongue in the vocal tract 5) The parameter F$_2$- F$_1$, which is the difference between F$_2$ frequency and F$_1$ frequency showed an excellent indicator of differenciating the oral cavity articulated vowels from pharyngeal cavity articulated vowels. If the F$_2$-F$_1$ is less than about 600Hz which indicates the vowel is articulated in the pharyngeal cavity, and more than about 600Hz, which indicates that the vowel is articulated in the oral cavity.
본 논문은 고장 분류 시스템을 위해 진동 신호로부터 특징 벡터를 자동적으로 추출하는 효과적인 기법을 제안한다. 기존의 멜-주파수 캡스트럼 계수는 진동신호의 노이즈에 민감하여 분류 정확도를 감소시키는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문은 4단계 필터 뱅크로 구성된 스펙트럴 엔벨로프 캡스트럼 계수 분석을 제안하며, 4단계는 (1) 모든 진동 신호의 스펙트럴 엔벨로프를 기술하기 위한 선형 예측 코딩 알고리즘 사용 단계, (2) 일반적인 스펙트럴 모양을 얻기 위해 모든 엔벨로프의 평균화 단계, (3) 평균 엔벨로프와 그 주파수의 최대값을 찾기 위한 기울기 하강 방법 사용 단계, (4) 엔벨로프의 주파수 사이의 거리로부터 계산된 중앙값을 얻는데 사용되는 비 중첩 필터 뱅크 단계로 구성된다. 이4-단계필터뱅크는 특징벡터를 추출하기위해 캡스트럼 계수 계산에 사용된다. 마지막으로 유도전동기의 결함 형태를 구분하기 위해 이러한 특수 파라미터를 사용하는 다중 계층 서포트 벡터 머신을 사용한다. 모의실험 결과, 제안하는 방법은 약 99.65%의 분류 성능을 보이며, 동시에 기존 방법들보다 우수한 성능을 보인다.
본 논문에서는 ETSI와 3GPP에서 차세대 이동통신 IMT-2000 서비스의 음성부호화기의 표준으로 채택한 AMR을 인터넷을 통한 멀티미디어 서비스에서 사용하기 위해 부가 정보를 이용한 손실 패킷 복구 방법이 첨가된 전송방법을 제시한다. 인터넷과 같은 패킷 교환 망에서의 음성 통신에서 과도한 패킷 손실은 급격한 음질 저하를 유발한다. 본 논문에서는 음성 패킷 데이터를 순방향 오류정정(FEC)의 부가 정보로 사용하고 연속 패킷 손실이 발생하였을 경우 오류 은닉방법을 사용하여 패킷 손실에 의한 음질 저하를 개선하는 방법을 제안한다. 순방향 오류정정방법 중 부가 음성 정보를 원래의 음성정보와 함께 보냄으로써 손실된 음성은 부가 음성 정보를 이용해 복구할 수 있다. 본 연구에서 사용한 AMR 음성 부호화기는 CELP기반의 음성 부호화기 이므로 음성 부호화기의 특징을 이용해 2개 이상의 군집오류가 발생했을 경우 패킷 손실이 일어나기 전후의 데이터를 이용해서 손실된 패킷으로 인한 영향을 최소로 하는 오류은닉 방법을 사용하였다. 제안된 방법의 성능을 평가하기 위해 AMR 부호화기의 고음질 압축 방법인 12.2 kbit/s 모드로 전송하는 방법과 ITU-T 표준안인 CS-ACELP로 전송하는 방법을 SNR과 MOS 측정을 통해 비교하였다. 제안된 방법이 10%의 평균 패킷 손실률에서 부호화기 자체의 오류은닉 기술을 적용한 AMR - 12.2 kbit/s 모드보다 MOS값에서는 1.1, SNR값은 5.61 dB 높았으며, 제안된 방법은 20%의 손실률에서도 통신 가능한 음질을 유지하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.