• Title/Summary/Keyword: Linear positioning system

Search Result 219, Processing Time 0.027 seconds

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

The Basic Study on Design of Linear Pulse Motor for Embroidery Machine Characteristics (자수기 특성을 고려한 LPM의 설계에 관한 기초연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.765-767
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. in many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM. we used the field analysis program, The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static- conditions. The forces between forcer and platen have been calculated using the virtual work method.

  • PDF

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

Neural Networks Based Modeling with Adaptive Selection of Hidden Layer's Node for Path Loss Model

  • Kang, Chang Ho;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.193-200
    • /
    • 2019
  • The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.

Development of On-machine Flatness Measurement Method (평면도 기상 측정 방법 개발)

  • 장문주;홍성욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This paper presents an on-machine measurement method of flatness error fur surface machining processes. There are two kinds of on-machine measurement methods available to measure flatness errors in workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are often engaged in both methods. This paper proposes an idea to realize a measurement system of flatness errors and its rigorous application for estimation of motion errors of the positioning system. The measurement system is made by modifying the straightness measurement system, which consists of a laser, a CCD camera and processing system, a sensor head, and some optical units. The sensor head is composed of a retroreflector, a ball and ball socket, a linear motion guide unit and adjustable arms. The experimental .results show that the proposed method is useful to identify flatness errors of machined workpieces as well as motion errors of positioning systems.

A Study on the Structural Design of Linear Motor System (리니어모터 시스템 구조설계에 관한 연구)

  • Eun I.E.;Lee C.M.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

Study of Ultrasound Imaging Technique for Diagnosing Osteoporosis (골다공증 진단을 위한 초음파 영상화 진단 기법 연구)

  • Kim, H.J.;Han, S.M.;Lee, J.H.;Lee, M.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • Ultrasonic has been proposed as an attractive means of detecting bone loss. There have been several commercial ultrasound devices developed for measuring the heel to predict fracture at other bones. However, these devices select only single point of heel bone as measurement site. It causes poor assessment of bone quality due to the error of transducer positioning. In an effort to improve current ultrasound systems, we evaluated the linear scanning method which provides better prediction of bone quality and an accurate image of bone shape. The system used in this study biaxially scans a heel bone using automated linear scanning technique. The results demonstrated that the values of ultrasound parameters varied with different positions within bone specimen. It has been also found that the linear scanning method could better pre야ct bone quality, eliminating the error of transducer positioning.

Optimization of the Thermal Behavior of Linear Motors with High Speed and Force [$1^{st}$Paper] (고속$\cdot$대추력 리니어모터의 열특성 최적화 [1])

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.184-191
    • /
    • 2002
  • This paper presents the thermal behavior of a synchronous linear motor with high speed and force. Such a linear motor can successfully replace ball lead screw in machine tools because it has a high velocity, acceleration and good positioning accuracy. On the other hand, low efficiency and high heating up during operation are disadvantage of linear motors. For the application of linear motors to machine tools a water-cooling system is often used. In this research, structure of the linear motor and water cooler is changed to improve the thermal behavior of the linear motor. Some important effects of an integrated cooler, an U-cooler and a thermally symmetrical cooler are presented.

Optimal Design and Control of xy${\theta}$ Fine Stage in Lithography System (리소그라피 장비에서 xy${\theta}$미세구동기의 최적 설계 및 제어)

  • 김동민;김기현;이성규;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.163-170
    • /
    • 2002
  • The quality of a precision product, in general, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the work piece in the process. Recently the positioning accuracy level has reached to the level of submicron and long range of motion is required. For example, for 1 GDARM lithography, 20nm accuracy and 300mm stroke needs. This paper refers to the lithography stage especially to fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM (Linear DC Motor) is used and for fine one VCM is used. In this study, we propose the new structure of VCM for the fine actuator. It is 3 axis precision positioning stage for an aligner system. After we perform the optimal design of the stage to obtain the maximum force, which is related to the acceleration of the stage to accomplish throughput of product. And we controlled this fine stage with TDC. So we obtained 50nm resolution. So later more works will be done to obtain better accuracy.

Study on a Linear Motor Dynamometer for Positioning Performance Test (Linear Motor 위치 제어 성능 시험을 위한 장치 연구)

  • Roh C.Y.;Kim J.K;Roh M.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.305-308
    • /
    • 2005
  • Linear motor has been developed for linear motion of machine tools. Linear motor is useful to design the linear motion, high speed and high accuracy, because of the simple system not required the additional mechanical part such as coupling and ballscrew. This paper tested performance of linear motor such as velocity response, position tracing performance, subordinate Traction force change and positional accuracy.

  • PDF