• Title/Summary/Keyword: Linear network coding

Search Result 55, Processing Time 0.023 seconds

How Network Coding Benefits Converge-Cast in Wireless Sensor Networks

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Hai, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1180-1197
    • /
    • 2013
  • Network coding is one of the most promising techniques to increase the reliability and reduce the energy consumption for wireless sensor networks (WSNs). However, most of the previous works mainly focus on the network coding for multicast or unicast in WSNs, in spite of the fact that the converge-cast is the most common communication style in WSNs. In this paper, we investigate, for the first time as far as we know, the feasibility of acquiring network coding benefits in converge-cast, and we present that with the ubiquitous convergent structures self-organized during converge-casting in the network, the reliability benefits can be obtained by applying linear network coding. We theoretically derive the network coding benefits obtained in a general convergent structure, and simulations are conducted to validate our theoretical analysis. The results reveal that the network coding can improve the network reliability considerably, and hence reduce number of retransmissions and improve energy-efficiency.

A Joint Sub-Packet Level Network Coding and Channel Coding (서브 패킷 단위의 네트워크 코딩 및 채널 코딩 결합 기법)

  • Kim, Seong-Yeon;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.659-665
    • /
    • 2015
  • Recent studies on network coding scheme for increasing transmission efficiency of the network has been actively conducted. In this paper, we apply RLNC in sub-packet unit and propose a joint scheme of sub-packet level network coding and LDPC code. The proposed method can have similar ability of network coding and obtain further error correction capability. The simulation results show that the proposed one enhances error correction capability compared to the case using only LDPC when extra packets are received.

New Secure Network Coding Scheme with Low Complexity (낮은 복잡도의 보안 네트워크 부호화)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.295-302
    • /
    • 2013
  • In the network coding, throughput can be increased by allowing the transformation of the received data at the intermediate nodes. However, the adversary can obtain more information at the intermediate nodes and make troubles for decoding of transmitted data at the sink nodes by modifying transmitted data at the compromised nodes. In order to resist the adversary activities, various information theoretic or cryptographic secure network coding schemes are proposed. Recently, a secure network coding based on the cryptographic hash function can be used at the random network coding. However, because of the computational resource requirement for cryptographic hash functions, networks with limited computational resources such as sensor nodes have difficulties to use the cryptographic solution. In this paper, we propose a new secure network coding scheme which uses linear transformations and table lookup and safely transmits n-1 packets at the random network coding under the assumption that the adversary can eavesdrop at most n-1 nodes. It is shown that the proposed scheme is an all-or-nothing transform (AONT) and weakly secure network coding in the information theory.

TCP Performance Improvement in Network Coding over Multipath Environments (다중경로 환경의 네트워크 코딩에서의 TCP 성능개선 방안)

  • Lim, Chan-Sook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.81-86
    • /
    • 2011
  • In one of the most impacting schemes proposed to address the TCP throughput problem over network coding, the network coding layer sends an acknowledgement if an innovative linear combination is received, even when a new packet is not decoded. Although this scheme is very effective, its implementation requires a limit on the coding window size. This limitation causes low TCP throughput in the presence of packet reordering. We argue that a TCP variant detecting a packet loss relying only on timers is effective in dealing with the packet reordering problem in network coding environments as well. Also we propose a new network coding layer to support such a TCP variant. Simulation results for a 2-path environment show that our proposed scheme improves TCP throughput by 19%.

Random Linear Network Coding to Improve Reliability in the Satellite Communication (위성 통신에서 신뢰성 향상을 위한 랜덤 선형 네트워크 코딩 기술)

  • Lee, Kyu-Hwan;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.700-706
    • /
    • 2013
  • In this paper, we propose a method for applying random linear network coding in satellite communication to improve reliability. In the proposed protocol, network-coded redundancy (NC-R) packets are transmitted in the PEP (Performance Enhancement Proxy). Therefore, if data packets is lost by wireless channel error, they can be recovered by NC-R packets. We also develop the TCP performance model of the proposed protocol and evaluate the performance of the proposed protocol. In the simulation results, It is shown that the proposed protocol can improve the TCP throughput as compared with that of the conventional TCP because the NC-R packets is sent by the sender-side PEP and the receiver-side PEP use these packets to recover the lost packets, resulting in reducing the packet loss in TCP.

Homomorphic Subspace MAC Scheme for Secure Network Coding

  • Liu, Guangjun;Wang, Xiao
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.173-176
    • /
    • 2013
  • Existing symmetric cryptography-based solutions against pollution attacks for network coding systems suffer various drawbacks, such as highly complicated key distribution and vulnerable security against collusion. This letter presents a novel homomorphic subspace message authentication code (MAC) scheme that can thwart pollution attacks in an efficient way. The basic idea is to exploit the combination of the symmetric cryptography and linear subspace properties of network coding. The proposed scheme can tolerate the compromise of up to r-1 intermediate nodes when r source keys are used. Compared to previous MAC solutions, less secret keys are needed for the source and only one secret key is distributed to each intermediate node.

A Network Coding Based Green Cognitive Radio Network (네트워크 코딩 기반 저탄소·친환경 인지 라디오 네트워크)

  • Oh, Hayoung
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.130-137
    • /
    • 2015
  • With the rapid increase of energy consumption and environmental problems, the need for green techniques is increasing. Network coding can provide a solution by reducing unnecessary data transmission and by estimating traffic patterns. In addition, it can amplify the synergy with the cognitive radio network (CR) since the CR has recognition and optimal decision functionalities. In this paper, we propose a network coding based green cognitive radio network. With the simulations, we show that the proposed scheme is up to 25% better than the previous work.

Practical Implementation and Performance Evaluation of Random Linear Network Coding (랜덤 선형 네트워크 코딩의 실용적 설계 및 성능 분석)

  • Lee, Gyujin;Shin, Yeonchul;Koo, Jonghoe;Choi, Sunghyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1786-1792
    • /
    • 2015
  • Random linear network coding (RLNC) is widely employed to enhance the reliability of wireless multicast. In RLNC encoding/decoding, Galois Filed (GF) arithmetic is typically used since all the operations can be performed with symbols of finite bits. Considering the architecture of commercial computers, the complexity of arithmetic operations is constant regardless of the dimension of GF m, if m is smaller than 32 and pre-calculated tables are used for multiplication/division. Based on this, we show that the complexity of RLNC inversely proportional to m. Considering additional overheads, i.e., the increase of header length and memory usage, we determine the practical value of m. We implement RLNC in a commercial computer and evaluate the codec throughput with respect to the type of the tables for multiplication/division and the number of original packets to encode with each other.

Intra-Session Network Coding for Improving Throughput in Multirate Multihop Wireless Networks (다중 레이트 멀티 홉 무선 네트워크 환경의 처리율 향상을 위한 인트라세션 네트워크 코딩)

  • Park, Mu-Seong;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.21-26
    • /
    • 2012
  • Intra-session network coding has been proposed to improve throughput by simplifying scheduling of multi-hop wireless network and efficiency of packet transmission. Multi-rate transmission has been used in multihop wireless networks. An opportunistic routing with multirate shows throughput improvement compared with single rate. In this paper, we propose a method of throughput improvement in multi-hop wireless network by using multi-rate and intra-session network coding. We suggest a method to select an local optimal transmission rate at each node. The maximum throughput is evaluated by using linear programming (LP). To solve the LP, we use MATLAB and lp_solve IDE program. The performance evaluation results show that end-to-end throughput is improved by using multirate and intra-session network coding can achieve better throughput than opportunistic routing.

Linear network coding in convergecast of wireless sensor networks: friend or foe?

  • Tang, Zhenzhou;Wang, Hongyu;Hu, Qian;Ruan, Xiukai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3056-3074
    • /
    • 2014
  • Convergecast is probably the most common communication style in wireless sensor networks (WSNs). And linear network coding (LNC) is a promising concept to improve throughput or reliability of convergecast. Most of the existing works have mainly focused on exploiting these benefits without considering its potential adverse effect. In this paper, we argue that LNC may not always benefit convergecast. This viewpoint is discussed within four basic scenarios: LNC-aided and none-LNC convergecast schemes with and without automatic repeat request (ARQ) mechanisms. The most concerned performance metrics, including packet collection rate, energy consumption, energy consumption balance and end-to-end delay, are investigated. Theoretical analyses and simulation results show that the way LNC operates, i.e., conscious overhearing and the prerequisite of successfully decoding, could naturally diminish its advantages in convergecast. And LNC-aided convergecast schemes may even be inferior to none-LNC ones when the wireless link delivery ratio is high enough. The conclusion drawn in this paper casts a new light on how to effectively apply LNC to practical WSNs.