• Title/Summary/Keyword: Linear motion

Search Result 2,034, Processing Time 0.034 seconds

A Study on Contact angle of the Linear Guide Way (리니어 가이드 웨이의 접촉각에 관한 연구)

  • Lee, Sun-Kon;Park, Young-Gee
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.11-16
    • /
    • 2009
  • This research investigates contact angle of Linear Guide Way through a experimental result and theoretical analysis. Since last ten years, most of researchers who concerned with the precision machinery and semiconductor device production etc. so the researches about Linear Guide Way have been unnoticed. The precision machinery and semiconductor device production system has the principle which transfers the mechanical moving to accuracy position control. The Linear Guide Way system has the principle which transfers mechanical moving to accuracy position control is very important to improve performance of the precision machinery and semiconductor device production system. So, In this research, in order to improvement for producing Linear Guide Way, bearing loading analysis and contact angle change through Linear Guide Way theoretical analysis and bearing modeling. Through this study, we may expect that there will be more improvement for producing Linear Guide Way.

Human-like Balancing Motion Generation based on Double Inverted Pendulum Model (더블 역 진자 모델을 이용한 사람과 같은 균형 유지 동작 생성 기술)

  • Hwang, Jaepyung;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.239-247
    • /
    • 2017
  • The purpose of this study is to develop a motion generation technique based on a double inverted pendulum model (DIPM) that learns and reproduces humanoid robot (or virtual human) motions while keeping its balance in a pattern similar to a human. DIPM consists of a cart and two inverted pendulums, connected in a serial. Although the structure resembles human upper- and lower-body, the balancing motion in DIPM is different from the motion that human does. To do this, we use the motion capture data to obtain the reference motion to keep the balance in the existence of external force. By an optimization technique minimizing the difference between the motion of DIPM and the reference motion, control parameters of the proposed method were learned in advance. The learned control parameters are re-used for the control signal of DIPM as input of linear quadratic regulator that generates a similar motion pattern as the reference. In order to verify this, we use virtual human experiments were conducted to generate the motion that naturally balanced.

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Design a Small Form Factor Actuator using Inclined Motion Guides (경사형 모션 가이드를 이용한 초소형 액츄에이터)

  • Yang, Tae-Joon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.136-139
    • /
    • 2006
  • In this paper we propose a small form factor actuator using an inclined motion guide for auto-focusing and zoom motions for mobile information devices. The novel structure using the inclined motion guide and a lens-supporting beam converts the circular motion by an ultrasonic motor into the linear motion of the optical lens. The proposed actuator has a simple structure to minimizing the mechanical tolerance, and the stroke is easy to modify by controlling the inclined angle. Experiments using a prototype verify the validity of the model as small form factor optical actuator.

  • PDF

Deployment or Retraction of Beam with Large Rotational Motion (대각 선회하는 보의 전개 및 수납)

  • 김상원;김지환
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.111-117
    • /
    • 2001
  • Present work deals with a study on the deployment or retraction of cantilever beam that includes the rigid-body motion of large displacement of beam through the translational and rotational motions in 2-dimensional plane. The equations of motion are derived with respect to non-Cartesian coordinate system. In the formulation of equations of motion, shear deformations and geometrically non-linear effect are included. An assumed mode method is applied and numerical convergence characteristics are studied also. Types of motion of the moving beam are assumed to be classified as‘slow’or‘fast’motion, and the dynamic characteristics are investigated.

  • PDF

Linear Motion Perception under Additional Somatosensation (추가된 체성 감각에 의한 선형 운동 지각 변화)

  • Yi, Yong-Woo;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.678-686
    • /
    • 2011
  • When one sensor cannot provide information by sensory deficit or loss, the sensory information can be provided by substituting other sensors for the defected sensor. This sensory substation might be influence on the deteriorated motion perception that consists of multi-sensory information such as visual, vestibular and somatosensory information. In this study, to investigate whether the additional sensation by sensory substitution could be integrated into the motion perception, we examined the effect of substituted postural sway sensation on the directional perception of body movement. Deteriorated motion perception by the reduced plantar sensation was enhanced under sensory substitution condition that provided the body sway information as the plantar vibratory stimulus. These results imply that the additional sensation might be integrated into and improve the motion perception.

Compliant motion controllers for kinematically redundant manipulators

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.456-459
    • /
    • 1995
  • The problem of compliant motion control using a redundant manipulator is addressed in this article. Specifically, a hybrid-control type and impedance-control type controllers are extended to general redundant manipulators based on the kinematically decomposed and geometrically compatible modeling of its joint space. In the case of the hybrid controller, it leads to the linear and decoupled closed-loop dynamics in the three motion spaces, that is the motion-controlled, force-controlled, and the null motion-controlled spaces of the redundant manipulator. When the proposed impedance controller is applied, the decoupled impedance models in three motion spaces are obtained. The superiority of the proposed controllers is verified with the numerical experiments.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF