• Title/Summary/Keyword: Linear function

Search Result 4,293, Processing Time 0.028 seconds

A Non-Linear Exponential(NLINEX) Loss Function in Bayesian Analysis

  • Islam, A.F.M.Saiful;Roy, M.K.;Ali, M.Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.899-910
    • /
    • 2004
  • In this paper we have proposed a new loss function, namely, non-linear exponential(NLINEX) loss function, which is quite asymmetric in nature. We obtained the Bayes estimator under exponential(LINEX) and squared error(SE) loss functions. Moreover, a numerical comparison among the Bayes estimators of power function distribution under SE, LINEX, and NLINEX loss function have been made.

  • PDF

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

Hypothesis Testing for New Scores in a Linear Model

  • Park, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1007-1015
    • /
    • 2003
  • In this paper we introduced a new score generating function for the rank dispersion function in a general linear model. Based on the new score function, we derived the null asymptotic theory of the rank-based hypothesis testing in a linear model. In essence we showed that several rank test statistics, which are primarily focused on our new score generating function and new dispersion function, are mainly distribution free and asymptotically converges to a chi-square distribution.

Measurement and Analysis of Back-EMF and Thrust of a Linear Brushless DC Motor (선형 브러시리스 DC 모터의 역기전력과 추력 측정 및 분석)

  • 이춘호;김용일;현동석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.183-192
    • /
    • 1998
  • In this paper, we measure the back-EMF and the thrust of a linear brushless DC motor along the relative position between coils and magnets in various speed environments in order to obtain the back-EMF and the thrust as a function of a motor position. The measured back-EMF function and thrust function of the position differ from the analytical ones within 5%. The measured back-EMF and thrust function can, then, be employed in controlling the thrust ripple of the linear motor. Furthermore, to minimize the torque ripple of the linear motor, we suggest the design method to shape the back-EMF and thrust function of the linear motor.

  • PDF

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Modeling of a Transfer Function for Frequency Controlled Resonant Inverters

  • Han, Mu-Ho;Lee, Chi-Hwan;Kwon, Woo-Hyun
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.567-574
    • /
    • 2009
  • A linear transfer function for the output current control of frequency-controlled resonant inverters is proposed in this paper. The circuit of resonant inverters can be transformed into two coupled circuits through the complex phasor transform. The circuits consist of cross-coupled power sources and passive elements. The circuits are used to induce the state space equation, which is transformed into the $4^{th}$ order cross-coupled transfer function. The $4^{th}$ order cross-coupled transfer function is modeled into a $2^{nd}$ order linear transfer function based on a behavior analysis of the pole and zero locations that facilitate a simple and intuitive linear transfer function. The feasibility and validity of the proposed linear transfer function were verified by simulation and experiment.

ON PERIODICIZING FUNCTIONS

  • Naito Toshiki;Shin Jong-Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.253-263
    • /
    • 2006
  • In this paper we introduce a new concept, a 'periodicizing' function for the linear differential equation with the periodic forcing function. Moreover, we construct this function, which is closely related with the solution of a difference equation and an indefinite sum. Using this function, we can obtain a representation of solutions from which we see immediately the asymptotic behavior of the solutions.

Node Monitoring Algorithm with Piecewise Linear Function Approximation for Efficient LDPC Decoding (Node Monitoring 알고리듬과 NP 방법을 사용한 효율적인 LDPC 복호방법)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2011
  • In this paper, we propose an efficient algorithm for reducing the complexity of LDPC code decoding by using node monitoring (NM) and Piecewise Linear Function Approximation (NP). This NM algorithm is based on a new node-threshold method, and the message passing algorithm. Piecewise linear function approximation is used to reduce the complexity for more. This algorithm was simulated in order to verify its efficiency. Simulation results show that the complexity of our NM algorithm is reduced to about 20%, compared with thoes of well-known method.

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.