• 제목/요약/키워드: Linear engine

검색결과 317건 처리시간 0.021초

하이브리드 굴삭기용 엔진의 효율 향상 방안에 관한 연구 (Study on the Improvement Methods of Engine Efficiency in Hybrid Excavator)

  • 박민제;민경덕
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.392-400
    • /
    • 2016
  • In this paper, a study based on engine operating conditions versus hybrid excavator engines was conducted about the engine performance and fuel consumption via the 1-D engine simulation model. First of all, engine operating points with performance and emission were determined by driving patterns. The 1-D HFEM(High Frequency Engine Model) was developed for deep insight into engine combustion and the energy conversion phenomena. In accordance with changing operating points, especially High Idle and Rated output conditions, engine parameters and systems such as turbocharger(Waste Gate Turbocharger and Variable Geometry Turbocharger) injection strategies and EGR(Exhaust Gas Recirculation) should be considered. Therefore, various configurations and parametric analysis with optimization methods in hybrid excavator were simulated and optimized by NLPQL(Non-linear Programming by Quadratic Lagrangian algorithm) in 1-D HFEM. As a result, the fuel consumption with the developed hybrid electric excavator engine could be significantly decreased and bsfc(Brake Specific Fuel Consumption) was also reduced about 5 % to 7 % without any performance degradation.

정수 선형 최적화를 이용한 조선해양 의장품 제작 물량 할당에 관한 연구 (Optimization of Quantity Allocation using Integer Linear Programming in Shipbuilding Industry)

  • 박중구;김민규
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, we developed an allocation optimization system for supply chain management in the shipbuilding and offshore construction industry. Supply chain operation is a way of operating manufacturing company responsible for the procurement of outfitting parts. The method about how to allocate the manufacturing volume to each partner company includes important decisions. According to the allocation method, the stability of the material supplied to the final installation process is guaranteed. We improved the allocation method that was previously decided by the person in charge. Based on the optimization engine, a system is developed that can automatically allocate the production volume. For optimization model configuration, factors affecting the volume allocation were analyzed and modeled as constraint factors. A target function is defined to minimize the difference in the load variance of each partner company. In order to use the same type of volume allocation engine for various outfitting products, the amount of work done by the partner company was standardized. We developed an engine that can allocate the same production load of each production partner. Using this engine, the operating system was developed and applied to the actual offshore project. It has been confirmed that the work load variance of suppliers can be maintained uniformly using the optimization engine rather than manual method. By this system, we stabilize the manufacturing process of partner suppliers.

GPA를 이용한 가스터빈 엔진의 성능진단에 의한 최적 계측변수 선정에 관한 연구 (Optimal Parameter Selection by Health Monitoring of Gas Turbine Engines using Gas Path Analysis)

  • 김석균;;공창덕
    • 한국추진공학회지
    • /
    • 제3권1호
    • /
    • pp.24-33
    • /
    • 1999
  • 가스터빈 엔진의 성능예측과 진단을 위해 선형 및 비선형 가스경로 해석방법이 적용되었다. 염, 부식, 침식과 같은 물리적 손상을 탐지하기 위한 최적 계측변수를 구하기 위해 비선형 가스경로 해석을 이용하였다. 물리적 손상이 엔진성능에 미치는 영향을 연구하는데 전형적 산업용 가스터빈 엔진인 TB5000에 적용하였다. 선형 가스경로 해석과 비선형 가스경로 해석의 끈 오차 비교를 통해 최적의 계측변수가 정의될 수 있었다. 결과적으로, 선형 가스경로 해석방법은 선형화 모델의 가정에 의해 유도된 오차정도가 손상의 크기와 같은 정도가 되는 반면에 비선형 가스경로 해석방법은 Newton-Raphson 반복기법을 사용하여 독립변수와 종속변수의 비선형 관계를 충분한 정확성과 함께 풀 수 있다는 점을 알 수 있었다.

  • PDF

실린더 블록 사이의 냉각수 유입홀이 대형 디젤엔진의 냉각성능에 주는 영향 (Effect of Coolant Flow Passages Between Cylinder Blocks on the Cooling Performance of a Heavy-duty Diesel Engine)

  • 이상규;임동렬;이상업;김민정;유승현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.341-344
    • /
    • 2006
  • In this analytical study on the engine coolant flow of a heavy-duty diesel engine with 4 valves and linear-type 8 liter 6 cylinders, the characteristics of pressure drop and engine cooling performance with the additional coolant passages between cylinder blocks have been investigated. Since the most part of pressure drop is caused by the coolant flow passages inside a cylinder head and cylinder blocks for this type of heavy-duty diesel engines, the advantage of pressure drop is just 2.6% and the characteristics of heat transfer and the distribution of coolant velocities in the head part show little differences in case of additional coolant passages. Thus the coolant flow passages between cylinder blocks make little contribution on the cooling performance of heavy-duty diesel engines

  • PDF

Multidimensional Engine Modeling: NO and Soot Emissions in a Diesel Engine with Exhaust Gas Recirculation

  • Kim, Hongsuk;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1196-1204
    • /
    • 2001
  • The effects of EGR(Exhaust Gas Recirculation) on heavy-duty diesel engine performance, NO and soot emissions were numerically investigated using the modified KIVA-3V code. For the fuel spray, the atomization model based on the linear stability analysis and spray wall impingement model were developed for the KIVA-3V code. The Zeldovich mechanism for the formation of nitric oxide and the soot model suggested by Hiroyasu et al. were used to predict the diesel emissions. In this paper, the computational results of fuel spray, cylinder pressure, and emissions were compared with experimental data, and the optimum EGR rates were sought from the NO and soot emissions trade-off. The results showed that the EGR is effective in suppressing NO but the soot emission was increased considerably by EGR. Using cooled EGR, soot emission could be enhanced without worsening of NO.

  • PDF

An Improved Hybrid Kalman Filter Design for Aircraft Engine based on a Velocity-Based LPV Framework

  • Liu, Xiaofeng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.535-544
    • /
    • 2017
  • In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of the process and measurement noise covariance matrices' values are also discussed. By applying it to a commercial turbofan engine, simulation results show the efficiency.

Trend Monitoring of A Turbofan Engine for Long Endurance UAV Using Fuzzy Logic

  • Kong, Chang-Duk;Ki, Ja-Young;Oh, Seong-Hwan;Kim, Ji-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.64-70
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results. it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

능동형 엔진 마운트 성능 평가를 위한 6축 시뮬레이터 구축 (Development of 6-DOF Simulator for Active Engine Mounting System)

  • 김정훈;김재산;이한동;박태익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.520-525
    • /
    • 2011
  • As worldwide concern stands on global warming and greenhouse gases from internal combustion engine, the interests in technologies for a highly efficient powertrain has been increased. Concurrently the investigation to improve the deteriorated NVH, a by-product of energy efficient powertrain, is conducted seriously. The NVH performance of a new type of active engine mount that offers increased advantages over a passive hydraulic mount is examined using a newly developed 6-DOF simulator. The simulator is in the shape of Hexapod Stewart Platform adopting LEMA, a new type of actuator which is patented and commercialized by ACT Inc,, the world wide leader in the design, development, and manufacture of high performance linear electro-magnetic actuators for active vibration control. The target vibration signals of an aimed vehicle at four engine mounts are measured and simulated by 6-DOF simulator at the laboratory. The resulting NVH performances of the new active mounting system at a vehicle and on a simulator are examined and compared. Even though the active mount performance of lab test demonstrates less effective than the result of a real vehicle test, vibration reduction is identified through the simulator.

  • PDF

IMM 필터 및 GLRT를 이용한 무인기용 엔진의 실시간 결함 진단 (Real Time Fault Diagnosis of UAV Engine Using IMM Filter and Generalized Likelihood Ratio Test)

  • 한동주;김상조;김유일;이수창
    • 한국항공우주학회지
    • /
    • 제50권8호
    • /
    • pp.541-550
    • /
    • 2022
  • IMM 필터 및 GLRT 기법을 이용하여 무인기용 엔진의 효과적인 실시간 결함 진단 방안을 도출하였다. 이를 위해서 엔진 동적 사이클해석으로부터 선형 진단 모델을 유도하고 잔차 추정을 위한 칼만필터를 도입한 후 각 기법의 특성을 고찰하여 엔진 제어 구동기 및 센서의 결함 진단에 적용하였다. 이 과정에서 IMM 필터로부터 효과적인 FDI 방안을 도출하였고 구동기 결함으로 인한 상태변수의 반응값을 추정하였으며, GLRT로부터는 구동기 및 센서의 결함값 추정과 FDI 기능을 확인하였다. 수치 모의시험 결과를 통해서 FDI를 위한 IMM 필터의 효용성과 각 결함 모드의 결함값 추정을 위한 GLRT 기법의 효용성을 확인하였다.

초음파센서를 이용한 전자식 연료분사엔진의 흡기유량측정 (Air Flow Rate Measurement in Multi Point Injection Engine U sing Ultrasonic Sensors)

  • 박경석;김중일;고상근;노승탁;이종화
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.58-65
    • /
    • 1995
  • In this study an air flow meter was developed for MPI engine using ultrasonic sensors. The major characteristcs of the ultrasonic flow meter are high speed response, flow direction recognition and linear output. The air flow rate measurements were conducted at upstream of the throttle and intake manifold. The characteristics of the ultrasonic flow meter are compared with those of the Bosch hot wire flow meter at both steady and unsteady engine conditions.

  • PDF