• Title/Summary/Keyword: Linear combination analysis

Search Result 362, Processing Time 0.024 seconds

Dynamic Analysis of a Cantilever Beam with the Payametric Excitation in Rotation (회전 방향으로 매개 가진되는 외팔보의 동적 해석)

  • Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2270-2276
    • /
    • 2002
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized -$\alpha$ method.

The Effect of Local Basis Weight on Local Strain (지역 평량이 지역 변형률에 미치는 영향)

  • 남원석;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.105-109
    • /
    • 1999
  • The purpose of this experiment was to see the effect of local basis weight on the local strain during changing moisture content in handsheets. The averaged strain value of the whole size of paper sheet did not give more valuable information to explain non uniform deformation in the paper sheet. The combination of intact strain measurement system KISA (Linear Image Strain Analysis) and local basis weight measurement method using a scanner made it possible to compare local basis weight with local strain to explain moisture induced paper deformation . Usually higher basis weight local area showed higher moisture induced local strain. However, the hygro-induced strain values were highly affected by the behavior of neighbor local areas. Well distributed local basis weight paper would give more uniform local strains than those of non-uniformed local basis weight paper.

  • PDF

Basic Study for Cone Penetrometer Type Soil Water Content Sensor using Impedance Spectroscopy (원추 관입형 임피던스 수분센서 개발을 위한 기초 연구)

  • Lee, Dong-Hoon;Lee, Kyou-Seung;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.434-438
    • /
    • 2009
  • This study was conducted to design an cone penetrometer type impedance sensor that can measure soil water content in realtime. The best width between electrical probe was determined by 5 mm. For optimization about realtime application device, linear regression analysis was applied between soil water content and impedance signal. It was concluded that proper combination of excitation frequency, impedance parameter, and model would provide acceptible performance of a soil waler content sensoe. Best model was obatained at a 36.5 MHz with |Z| as a predictor variable, with a coefficient of determination of 0.96 (RMSE=1.35, RPD=4.98).

Performance Analysis of Viola & Jones Face Detection Algorithm (Viola & Jones 얼굴 검출 알고리즘의 성능 분석)

  • Oh, Jeong-su;Heo, Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.477-480
    • /
    • 2018
  • Viola and Jones object detection algorithm is a representative face detection algorithm. The algorithm uses Haar-like features for face expression and uses a cascade-Adaboost algorithm consisting of strong classifiers, a linear combination of weak classifiers for classification. This algorithm requires several parameter settings for its implementation and the set values affect its performance. This paper analyzes face detection performance according to the parameters set in the algorithm.

  • PDF

A New Excitation Control for Multimachine Power Systems I: Decentralized Nonlinear Adaptive Control Design and Stability Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.278-287
    • /
    • 2005
  • In this paper a new excitation control scheme that improves the transient stability of multi machine power systems is proposed. To this end the backstepping technique is used to transform the system to a suitable partially linear form. On this system, a combination of both feedback linearization and adaptive control techniques are used to confront the nonlinearities. As shown in the paper, the resulting nonlinear control law ensures the uniform boundedness of all the state and estimated variables. Furthermore, it is proven that all the error variables are uniformly ultimately bounded (DUB) i.e. they converge to arbitrarily selected small regions around zero in finite-time. Simulation tests on a two generator infinite bus power system demonstrate the effectiveness of the proposed control.

Buckling Behavior of Seismic Isolation Bearings (면진 고무베어링의 좌굴거동)

  • 이종세;오종원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.187-194
    • /
    • 1999
  • Laminated rubber bearings are widely used as a key component in seismic isolation of structural systems subjected to earthquake loadings. The combination of rubber layers and reinforcing steel shims makes the bearings conditionally unstable similar to buckling of ordinary columns. The shear flexibility of these short columns can lead to relatively low buckling Toads which may be further reduced when high shear strains are simultaneously imposed As an analytical approach, the area reduction formula has been proposed to account for the reduction in buckling load due to shear, but the degree of conservatism is unknown. In order to complement analytical approaches, a non-linear finite element analysis can be used. In this paper, a numerical study which aims at determining the effect of high shear strain on the critical load of elastomeric bearings is presented. From the load-displacement curve at each specified shear displacement, the buckling load can be obtained using the Southwell procedures. The results obtained are then compared against the theoretical predictions in order to examine the validity and the conservatism of the theoretical formulas.

  • PDF

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.