• 제목/요약/키워드: Linear birefringence

검색결과 49건 처리시간 0.024초

사출성형 조건이 디스크의 복굴절에 미치는 영향 (Influence of Injection Molding Conditions on the Birefringence of Disks)

  • 이호상;박민규
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.28-33
    • /
    • 2010
  • A computer code was developed to simulate all three stages of the injection molding process: filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

사출성형 조건이 디스크의 복굴절에 미치는 영향 (Influences of Injection Molding Conditions on the Birefringence of a Disk)

  • 박민규;이동호;이호상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.305-309
    • /
    • 2005
  • A computer code was developed to simulate all three stages of the injection molding process ? filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

  • PDF

사출압축성형 공정에 대한 유한요소 해석 (Finite Element Analysis of Injection/Compression Molding Process)

  • 이호상
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

Numerical Simulation of Flow-Induced Birefringence in Injection Molded Disk

  • Lee H. S.;Shyu G. D.;Isayev A. I.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.41-47
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process - filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

  • PDF

Numerical simulation of flow-induced birefringence in injection molded disk

  • Shyu, Goang-Ding;Avraam I. Isayev;Lee, Ho-Sang
    • Korea-Australia Rheology Journal
    • /
    • 제15권4호
    • /
    • pp.159-166
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

수치해석적인 방법으로 규명한 정렬된 단축이방성 분자들의 질서변수와 상대 복굴절의 준선형 관계식 (The Explicitly Quasi-linear Relation Between the Order Parameter and Normalized Birefringence of Aligned Uniaxially Anisotropic Molecules Determined Using a Numerical Method)

  • 김상열
    • 한국광학회지
    • /
    • 제27권6호
    • /
    • pp.223-228
    • /
    • 2016
  • 액정과 같은 단축 이방성 분자들의 정렬 정도에 따라 달라지는 복굴절으로부터 상대 복굴절 ${\Delta}n_{rel}$를 구하고 ${\Delta}n_{rel}$과 방향질서변수(orientational order parameter) S의 관계를 탐색하였다. 무질서한 분포를 하고 있는 경우를 포함하여 액정의 정렬정도를 달리 표현할 수 있는 분포함수를 도입하고 이 분포함수를 사용하여 질서변수 S가 0부터 1까지 변하도록 액정분자들의 정렬정도를 달리하며 ${\Delta}n_{rel}$과 S를 수치계산 하였다. 이 계산 결과로부터 s와 ${\Delta}n_{rel}$$S=(1+a){\Delta}n_{rel}-a{\Delta}n^2_{rel}$와 같이 준선형적인 관계를 만족하며 a는 $n_o{\frac{{\Delta}n}{4}}$으로 근사할 수 있음을 확인하였다. 또한 복굴절으로부터 Vuks의 방법에 따라 구한 분자분극의 이방성과 Neugebauer의 방법에 따라 구한 분자분극의 이방성이 각각 질서변수 S와 또 다른 준선형 관계식들을 따름을 보였다.

사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 - (Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

Numerical Simulation of Flow-Induced Birefringence: Comparison of Injection and Injection/Compression Molding

  • Lee, Ho-Sang;Isayev, A.I.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.66-72
    • /
    • 2007
  • A computer code was developed to simulate the filling stage of an injection/compression molding process using a finite element method. The constitutive equation was the compressible Leonov model and the PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk under different processing conditions, including variations of the compression stroke and compression speed, were performed to determine their effects on the flow-induced birefringence. Simulated pressure traces were also compared to those obtained in conventional injection molding and with experimental data from the literature.

사출압축성형에서의 유동에 의한 복굴절 해석 (Numerical Simulation of Flow-Induced Birefringence in Injection/Compression Molding)

  • 이호상
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.65-69
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different processing conditions including the variation of compression stroke and compression speed were carried out to understand their effects on flow-induced birefringence. The simulated results were also compared with those by conventional injection molding and with experimental data from literature.

  • PDF