• Title/Summary/Keyword: Linear binary classifier

Search Result 16, Processing Time 0.02 seconds

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip (유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

An Experimental Study on Text Categorization using an SVM Classifier (SVM 분류기를 이용한 문서 범주화 연구)

  • 정영미;임혜영
    • Journal of the Korean Society for information Management
    • /
    • v.17 no.4
    • /
    • pp.229-248
    • /
    • 2000
  • Among several learning algorithms for lexl calegoriration. SVM(Snpport Vsctor Machines) has been provcd to ouq~e~fotm other classifiers. Th~study e~~aluales the categarizalion ability of en SVM classifier using the ModApte split of the Reutcrs-21578 dataset. First. an experiment 1s perlormed to test a few feature wetghtlng schemes that will be used in thc calegarization tasks. Second, (he categorization periarrnances of the lulear SVM and the non-linear SVM are compared. Finally. the binary SVM classifier is expanded into a multi-class classifier and thek pcrforrnnnces are comparativcly evaluated.

  • PDF

Binary classification by the combination of Adaboost and feature extraction methods (특징 추출 알고리즘과 Adaboost를 이용한 이진분류기)

  • Ham, Seaung-Lok;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.42-53
    • /
    • 2012
  • In pattern recognition and machine learning society, classification has been a classical problem and the most widely researched area. Adaptive boosting also known as Adaboost has been successfully applied to binary classification problems. It is a kind of boosting algorithm capable of constructing a strong classifier through a weighted combination of weak classifiers. On the other hand, the PCA and LDA algorithms are the most popular linear feature extraction methods used mainly for dimensionality reduction. In this paper, the combination of Adaboost and feature extraction methods is proposed for efficient classification of two class data. Conventionally, in classification problems, the roles of feature extraction and classification have been distinct, i.e., a feature extraction method and a classifier are applied sequentially to classify input variable into several categories. In this paper, these two steps are combined into one resulting in a good classification performance. More specifically, each projection vector is treated as a weak classifier in Adaboost algorithm to constitute a strong classifier for binary classification problems. The proposed algorithm is applied to UCI dataset and FRGC dataset and showed better recognition rates than sequential application of feature extraction and classification methods.

Prediction of the Following BCI Performance by Means of Spectral EEG Characteristics in the Prior Resting State (뇌신호 주파수 특성을 이용한 CNN 기반 BCI 성능 예측)

  • Kang, Jae-Hwan;Kim, Sung-Hee;Youn, Joosang;Kim, Junsuk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.265-272
    • /
    • 2020
  • In the research of brain computer interface (BCI) technology, one of the big problems encountered is how to deal with some people as called the BCI-illiteracy group who could not control the BCI system. To approach this problem efficiently, we investigated a kind of spectral EEG characteristics in the prior resting state in association with BCI performance in the following BCI tasks. First, spectral powers of EEG signals in the resting state with both eyes-open and eyes-closed conditions were respectively extracted. Second, a convolution neural network (CNN) based binary classifier discriminated the binary motor imagery intention in the BCI task. Both the linear correlation and binary prediction methods confirmed that the spectral EEG characteristics in the prior resting state were highly related to the BCI performance in the following BCI task. Linear regression analysis demonstrated that the relative ratio of the 13 Hz below and above the spectral power in the resting state with only eyes-open, not eyes-closed condition, were significantly correlated with the quantified metrics of the BCI performance (r=0.544). A binary classifier based on the linear regression with L1 regularization method was able to discriminate the high-performance group and low-performance group in the following BCI task by using the spectral-based EEG features in the precedent resting state (AUC=0.817). These results strongly support that the spectral EEG characteristics in the frontal regions during the resting state with eyes-open condition should be used as a good predictor of the following BCI task performance.

A Study on The Feature Selection and Design of a Binary Decision Tree for Recognition of The Defect Patterns of Cold Mill Strip (냉연 표면 흠 분류를 위한 특징선정 및 이진 트리 분류기의 설계에 관한 연구)

  • Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae;Kim, Kyoung-Min
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2330-2332
    • /
    • 1998
  • This paper suggests a method to recognize the various defect patterns of cold mill strip using binary decision tree automatically constructed by genetic algorithm. The genetic algorithm and K-means algorithm were used to select a subset of the suitable features at each node in binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes by a linear decision boundary. This process was repeated at each node until all the patterns are classified into individual classes. The final recognizer is accomplished by neural network learning of a set of standard patterns at each node. Binary decision tree classifier was applied to the recognition of the defect patterns of cold mill strip and the experimental results were given to demonstrate the usefulness of the proposed scheme.

  • PDF

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

Analysis of large-scale flood inundation area using optimal topographic factors (지형학적 인자를 이용한 광역 홍수범람 위험지역 분석)

  • Lee, Kyoungsang;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.481-490
    • /
    • 2018
  • Recently, the spatiotemporal patterns of flood disasters have become more complex and unpredictable due to climate change. Flood hazard map including information on flood risk level has been widely used as an unstructured measure against flooding damages. In order to product a high-precision flood hazard map by combination of hydrologic and hydraulic modeling, huge digital information such as topography, geology, climate, landuse and various database related to social economic are required. However, in some areas, especially in developing countries, flood hazard mapping is difficult or impossible and its accuracy is insufficient because such data is lacking or inaccessible. Therefore, this study suggests a method to delineate large scale flood-prone area based on topographic factors produced by linear binary classifier and ROC (Receiver Operation Characteristics) using globally-available geographic data such as ASTER or SRTM. We applied the proposed methodology to five different countries: North Korea Bangladesh, Indonesia, Thailand and Myanmar. The results show that model performances on flood area detection ranges from 38% (Bangladesh) to 78% (Thailand). The flood-prone area detection based on the topographical factors has a great advantage in order to easily distinguish the large-scale inundation-potent area using only digital elevation model (DEM) for ungauged watersheds.