• Title/Summary/Keyword: Linear Stability Equation

Search Result 263, Processing Time 0.028 seconds

Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정상상태 진동응답)

  • Lee, Won-Kyoung;Yeo, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.

Analysis of Line and Circular Contact Elastohydrodynamic Lubrication with Multigrid Multilevel Method (다중 격자 다중 차원법을 이용한 선접촉 또는 점접촉 탄성 유체 윤활 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.323-330
    • /
    • 1999
  • The conventional analysis for the numerical computation of fluid film thickness with elastic deformation of contact region. is performed by Newton-Rephson method for its 18st convergence characteristics. However, both high load and relatively low sliding velocity frequently make it impossible for Newton-Rahpson method to get both converged and stable solutions. In particular, this method cannot provide converged Solution under the condition of high load above 1.0 GPa which frequently occurs in line contact of EHL problem. Multigird multi-level method for the solver of non-linear partial differential equation including solid deformation is preferred to Newton-Rshpson method for better convergence and stability and is applied to line contact EHL behavior in this study.

  • PDF

A Novel Approach to the Design of Discrete Adative Pole Assignment Controller with Integral Action (적분기를 갖는 직접 적응 극 배치 제어기의 새로운 설계 기법)

  • Kim, Jong-Hwan;Lee, Ju-Jang;Kim, Tai-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.60-63
    • /
    • 1990
  • This note presents a direct adaptive pole assignment control for general discrete, linear, time-invariant, nonmimum phase system.Controller parameters are estimated from the recursive least-squares algorithm, and some additional auxiliary parameters are obtained from aset of recursive equations based on a certain polynomial identity which is derived from the pole assignment equation and the Bezout identity. This scheme increase the numerical stability of the auxiliary parameters, and guarantees local convergence without any extra conditions for the external input. The effectiveness of the proposed scheme is demonstrated by the computer simulation.

  • PDF

Transient Linear Elastodynamic Analysis by the Finite Element Method (유한요소법을 이용한 과도 선형 동탄성 해석)

  • Hwang, Eun-Ha;Oh, Guen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • A new finite element equation is derived by applying quadratic and cubic time integration scheme to the variational formulation in time-integral for the analysis of the transient elastodynamic problems to increase the numerical accuracy and stability. Emphasis is focused on methodology for cubic time integration scheme procedure which are never presented before. In this semidiscrete approximations of the field variables, the time axis is divided equally and quadratic and cubic time variation is assumed in those intervals, and space is approximated by the usual finite element discretization technique. It is found that unconditionally stable numerical results are obtained in case of the cubic time variation. Some numerical examples are given to show the versatility of the presented formulation.

  • PDF

Flow Characteristics and Transverse Bed Slope in Curved Alluvial Channels (만곡 수로의 횡방향 하상경사와 흐름특성)

  • 차영기;이대철
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 1991
  • This study is for simulating to the model which analyzes flow characteristics and transverse bed slopes in a coarse-streambed of the meandering alluvial channels. Using the equations for conservation of mass, momentum, and for lateral stability of the streambed, a linear differential equation of transverse bed slope is derived from the flow characteristics in curved channels. Its solutions are solved by the Sine-generated curve method(SCM) and compared with results of field measurements. Lag distances by the maximum transverse bed slope and velocity profiles will predict risk sections of concave bank under floods.

  • PDF

SDRE Based Nonlinear Optimal Control of a Two-Wheeled Balancing Robot (SDRE 기법을 이용한 이륜 밸런싱 로봇의 비선형 최적제어)

  • Kim, Sang-Tae;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1037-1043
    • /
    • 2011
  • Two-wheeled balancing mobile robots are currently controlled in terms of linear control methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and greatly influence the overall driving performance. This paper addresses the SDRE nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the SDRE control outperforms LQR in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the SDRE control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly contributes to the driving performance and stability.

Nonlinear Control using Stepwise Fuzzy Moving Sliding Surface (계단형 퍼지 이동 슬라이딩 평면을 이용한 비선형 제어)

  • 유병국;양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.153-156
    • /
    • 2003
  • This short paper suggests a control strategy using a stepwise fuzzy moving sliding surface. The moving surface is a Sugeno-type fuzzy system that has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as an output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. the proposed method reduces the reaching and tracking time and improves robustness. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

  • PDF

ON AN ADDITIVE FUNCTIONAL INEQUALITY IN NORMED MODULES OVER A $C^*$-ALGEBRA

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • In this paper, we investigate the following additive functional inequality (0.1) ||f(x)+f(y)+f(z)+f(w)||${\leq}$||f(x+y)+f(z+w)|| in normed modules over a $C^*$-algebra. This is applied to understand homomor-phisms in $C^*$-algebra. Moreover, we prove the generalized Hyers-Ulam stability of the functional inequality (0.2) ||f(x)+f(y)+f(z)f(w)||${\leq}$||f(x+y+z+w)||+${\theta}||x||^p||y||^p||z||^p||w||^p$ in real Banach spaces, where ${\theta}$, p are positive real numbers with $4p{\neq}1$.

  • PDF

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

ERROR ESTIMATES OF PHYSICS-INFORMED NEURAL NETWORKS FOR INITIAL VALUE PROBLEMS

  • JIHAHM YOO;JAYWON KIM;MINJUNG GIM;HAESUNG LEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.33-58
    • /
    • 2024
  • This paper reviews basic concepts for Physics-Informed Neural Networks (PINN) applied to the initial value problems for ordinary differential equations. In particular, using only basic calculus, we derive the error estimates where the error functions (the differences between the true solution and the approximations expressed by neural networks) are dominated by training loss functions. Numerical experiments are conducted to validate our error estimates, visualizing the relationship between the error and the training loss for various first-order differential equations and a second-order linear equation.