• Title/Summary/Keyword: Linear Scanner

Search Result 130, Processing Time 0.027 seconds

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1131-1141
    • /
    • 2023
  • Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.

Upper Body Surface Change Analysis using 3-D Body Scanner (3차원 인체 측정기를 이용한 체표변화 분석)

  • Lee Jeongran;Ashdoon Susan P.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1595-1607
    • /
    • 2005
  • Three-dimensional(3-D) body scanners used to capture anthropometric measurements are now becoming a common research tool far apparel. This study had two goals, to test the accuracy and reliability of 3-D measurements of dynamic postures, and !o analyze the change in upper body surface measurements between the standard anthropometric position and various dynamic positions. A comparison of body surface measurements using two different measuring methods, 3-D scan measurements using virtual tools on the computer screen and traditional manual measurements for a standard anthropometric posture and for a posture with shoulder flexion were $-2\~20mm$. Girth items showed some disagreement of values between the two methods. None of the measurements were significantly different except f3r the neckbase girth for any of the measuring methods or postures. Scan measurements of the upper body items showed significant linear surface change in the dynamic postures. Shoulder length, interscye front and back, and biacromion length were the items most affected in the dynamic postures. Changes of linear body surface were very similar for the two measuring methods within the same posture. The repeatability of data taken from the 3-D scans using virtual tools showed satisfactory results. Three times repeated scan measurements f3r the scapula protraction and scapula elevation posture were proven to be statistically the same for all measurement items. Measurements from automatic measuring software that measured the 3-D scan with no manual intervention were compared with the measurements using virtual tools. Many measurements from the automatic program were larger and showed quite different values.

Extra Dose Measurement of Differential Slice Thickness of MVCT Image with Helical Tomotherapy (토모테라피 치료 시 MVCT Image의 Slice Thickness 차이에 따른 선량 비교)

  • Lee, Byungkoo;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2013
  • Helical Tomotherapy is an innovative means of delivering intensity modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and helical computed tomography (CT) scanner. Hereat, during helical tomotherapy process, megavoltage computed tomography (MVCT) image are usually used for guiding the precise set-up of patient before/after treatment delivery. But which would certainly increase the total dose for patients, this study was to investigate the imaging dose of MVCT using the cylindrical "Cheese" phantom on a tomotherapy machine. A set of cylindrical "Cheese" phantom was adopted for scanning with respectively pitch value (1, 2, 3 mm) with same number slice (10 slice), same length (approximately 9 cm) and phantom set-ups on the couch of tomotherapy system. The average MVCT imaging dose were measured using A1SL ion chamber inserted in the phantom with preset geometry. The MVCT scanning average dose for the cylindrical "Cheese" phantom was 2.24 cGy, 1.02 cGy, 0.81 cGy during respectively pitch value (pitch 1, 2, 3 mm) with same number slice (10 slice), and same length's average dose was 2.47 cGy, 1.28 cGy, 0.88 cGy respectively (pitch 1, 2, 3 mm). Two major parameters, the assigned pitch numbers and scanning length, where the most important impacts to the dose variation. The MVCT dose was inversely proportional to the CT pitch value. The results may provide a reliable guidance for proper planning design of the scanning region, which is valuable to help minimize the extra dose to patient. Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines.

Consideration of density matching technique of the plate type direct radiologic image system and the conventional X-ray film;first step for the subtraction (Ektaspeed plus 필름을 이용한 일반 방사선시스템과 Digora를 이용한 디지탈 영상시스템의 밀도변화 비교연구)

  • So, Sung-Soo;Noh, Hyeun-Soo;Kim, Chang-Sung;Choi, Seong-Ho;Kim, Kee-Deog;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.199-211
    • /
    • 2002
  • Digital substraction technique and computer-assisted densitometirc analysis detect minor change in bone density and thus increase the diagnostic accuracy. This advantage as well as high sensitivity and objectivity which precludes human bias have drawn interest in radiologic research area. The objectives of this study are to verify if Radiographic density can be recognized in linear pattern when density profile of standard periapical radiograph with the aluminium stepwedge as the reference, was investigated under varies circumstances which can be encountered in clinical situations, and in addition to that to obtain mutual relationship between the existing standard radiographic system, and future digital image systems, by confirming the corelationship between the standard radiograph and Digora system which is a digital image system currently being used. In order to make quantitative analysis of the bone tissue, digital image system which uses high resolution automatic slide scanner as an input device, and Digora system were compared and analyzed using multifunctional program, Brain3dsp. The following conclusions were obtained. 1. Under common clinical situation that is 70kVp, 0.2 sec., and focal distance 10cm, Al-Equivalent image equation was found to be Y=11.21X+46.62 $r^2=0.9898$ in standard radiographic system, and Y=12.68X+74.59, $r^2=0.9528$ in Digora system, and linear relation was confirmed in both the systems. 2. In standard radiographic system, when all conditions were maintained the same except for the condition of developing solution, Al-Equivalent image equation was Y=10.07X+41.64, $r^2=0.9861$ which shows high corelationship. 3. When all conditions were maintained the same except for the Kilovoltage peak, linear relationship was still maintained under 60kVp, and Al-Equivalent image equation was Y=14.60X+68.86, $r^2=0.9886$ in the standard radiograhic system, and Y=13.90X+80.68, $r^2=0.9238$ in Digora system. 4. When all conditions were maintained the same except for the exposure time which was varied from 0.01 sec. to 0.8 sec., Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9188 to 0.9900, and in general, standard radiographic system showed higher R-square than Digora system. 5. When all conditions were maintained the same except for the focal distance which was varied from 5cm to 30cm, Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9463 to 0.9925, and the standard radiographic system had the tendency to show higher R-square in shorter focal distances.

Quantitative Analysis of Bone Mineral Measurements in Different Types of Dual-energy Absorptiometry Systems: Comparison of CT vs DEXA (이중 에너지 조사 방식의 장비별 골밀도 측정의 정량적 비교 분석: CT vs DEXA 비교)

  • Kim, Myeong Seong
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.311-316
    • /
    • 2017
  • Generally assessing bone mineral density (BMD) were performed on dual energy X-ray absorptiometry (DEXA) the same as dual energy CT (DECT) with a rapid-kVp switching. The purpose of this study is to compare the different of BMD value between DEXA and DECT method, and evaluate usefulness of DECT method. Using scanner for BMD measurements were GE, Healthcare Discovery 750 HD for DECT and Hologic QDR 4500W for DEXA. For compare BMD value in each method, scanned lumbar spine phantom and subjects visiting Korean National Cancer Center from April 2015 to December 2015, records of 50 patients. This study was approved by the Institutional Review Board. The mean BMD value measures for spine phantom and for subjects in each scanners presented strong correlation (r=0.948 with p<0.05 for phantom; r=0.635 with p<0.05 and Kendall's tau $({\tau})=0.46$ with p<0.05 for subjects) and linear relationship between DECT and conventional DEXA. DECT technique for BMD measurement will provide a very useful methodology without additional radiation dose.

Present Status and Future Aspects of Radiation Oncology in Korea (방사선 치료의 국내 현황과 미래)

  • Huh, Seung-Jae
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2006
  • $\underline{Purpose}$: An analysis of the infrastructure for radiotherapy in Korea was performed to establish a baseline plan in 2006 for future development. $\underline{Materials\;and\;Methods}$: The data were obtained from 61 radiotherapy centers. The survey covered the number of radiotherapy centers, major equipment and personnel. Centers were classified into technical level groups according to the IAEA criteria. $\underline{Results}$: 28,789 new patients were treated with radiation therapy in 2004. There were 104 megavoltage devices in 61 institutions, which included 96 linear accelerators, two Cobalt 60 units, three Tomotherapy units, two Cyberknife units and one proton accelerator in 2006. Thirty-five high dose rate remote after-loading systems and 20 CT-simulators were surveyed. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 medical physicists, 130 nurses and 369 radiation therapy technologists. All of the facilities employed treatment-planning computers and simulators, among these thirty-two percent (20 facilities) used a CT-simulator. Sixty-six percent (40 facilities) used a PET/CT scanner, and 35% (22 facilities) had the capacity to implement intensity modulated radiation therapy. Twenty-five facilities (41%) were included in technical level 3 group (having one of intensity modulated radiotherapy, stereotactic radiotherapy or intra-operative radiotherapy system). $\underline{Conclusion}$: Radiation oncology in Korea evolved greatly in both quality and quantity recently and demand for radiotherapy in Korea is increasing steadily. The information in this analysis represents important data to develop the future planning of equipment and human resources.

Evaluation of Dose Distribution Using Gafchromic $EBT^{(R)}$ Film (Gafchromic $EBT^{(R)}$ 필름을 이용한 선량분포의 평가)

  • Kang, Se-Sik;Ko, Seong-Jin;Jang, Eun-Sung
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Dose evaluation for small field such as stereotactic radiosurgery was performed using $Gafchromic^{(R)}$ EBT film. Every film which irradiated 6MV photon beam was scanned and obtained the optical density(OD) by flat bed scanner after 24 hours of irradiation. This study compared dose from diode in water and Gafchromic $EBT^{(R)}$ film in acrylic phantom to verify the reliability of the film, and to evaluate the SRS in clinical dose distributions from calculation and measurement in the region of virtual target in humanoid and cylindrical phantoms were compared. The Gafchromic $EBT^{(R)}$ film was found to be linear up to 9Gy. The $D_{max}$ for 6 MV was measured at 1.5 cm from the surface by both of diode and the film. As the depth is deeper, the error was measured within $2{\sim}3%$ at $10{\sim}20\;cm$ depth. Comparing between distribution from calculation and measurement, we found that there is 5% error at 90% isodose line. We found that given dose could be measured accurately by using the phantoms. It was feasible to use the Gafchromic $EBT^{(R)}$ film in quality assurance of SRS.

  • PDF

Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion (암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안)

  • Jang, Bo-An;Kim, Tae-Ho;Jang, Hyun-Sick
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2010
  • Surface roughness profiles were measured from 19 joint samples using a laser scanner, and Joint Roughness Coefficient (JRC) values were calculated from 30 sections in each sample. Although JRC values varied with the location of the section, the average JRC values from any three sections provides an adequate representation of the average JRC value for the entire surface well. Direct shear tests were performed on nine joints reproduced using molds of real joints in samples of gypsum. The peak friction angles (${\phi}_p$) showed a linear relationship with the average JRC values, yielding the following relationship: ${\phi}_p=41.037+1.046JRC$. However, the shear strengths measured by direct shear tests differed from those calculated using Barton's criterion. The relationship between calculated from direct shear tests and JRC measured from joint surfaces is defined as $JRC_R=f{\cdot}JRC$, and the correction coefficient f is was calculated as $f=3.15JRC^{-0.5}$, as calculated by regression. A modified shear-strength criterion, is proposed using the correction coefficient, ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$. This criterion may be effective in calculating the shear strength of moderately weathered rock joints and highly weathered rock joints with low strength and ductile behavior.

Effect of mixing method and storage time on dimensional stability of alginate impressions materials (혼합 방법과 보관 시간이 알지네이트 인상재의 체적 안정성에 미치는 효과)

  • Bang, Hyun-Ji;Shim, Hyun-Ah;Cho, Young-Eun;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.86-94
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the volume stability depending on the mixing methods and storage time for the conventional alginate and extended-pour alginate. Materials and methods: An arch-shaped metal model was fabricated, and one conventional alginate and two extended-pour alginates were used to take impressions using different mixing methods (hand and automatic). 120 impressions were taken (40 per each alginate) and stone models were made in accordance with the different storage times (immediate, 2 days, 5 days, and 6 days). The models were scanned with a 3D table scanner and dimensional change was measured by superimposing the scan data. Using SAS 9.4 (SAS Institute Inc., Cary, NC, USA), the general linear model and Tukey's post hoc test was conducted for statistical analysis (P<.001). Results: There was no statistically significant difference in the dimensional accuracy between two mixing methods, and the volume change was minimum when the stone was poured immediately in all groups. Dimensional accuracy showed a statistically significant difference between groups after 2 days of storage, and extended-pour alginate showed higher accuracy after 5 days of storage comparing to conventional one. Large amounts of volume change were showed at 2 - 5 days for conventional alginate and at 5 - 6 days for extended pour alginate. Conclusion: The mixing method of alginate does not affect volume stability. Although extended-pour alginate has better volume stability than conventional alginate for a long time, it is recommended to pour stone as soon as possible.

Evaluation of Validity of Edentulous Digital Model for Complete Denture Fabrication (총의치 제작을 위한 무치악 디지털 모형의 정확도 평가)

  • Kim, Won-Soo;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.393-398
    • /
    • 2015
  • One of the most critical causes in determining the clinical outcomes of dental prostheses is the validity of models. However, studies that evaluated validity of digital models are few. The objectives of this study were to evaluate validity of edentulous digital models for full denture fabrication. Twenty stone models (edentulous model) were manufactured and scanned by dental blue light emitting diode scanner. Twenty digital models were manufactured. Six linear distances (inter-canine distance, inter-molar distance, two dental arch lengths (right, left), two diagonal of dental arch lengths (right, left) were measured for validity evaluation. The measurements of distances of stone models were used by digital vernier caliper and digital models were used by computer program. The mean${\pm}$deviations values of six distances were calculated. The means were compared by the Mann Whitney U test (${\alpha}=0.05$). All statistical analysis were performed using IBM SPSS Statistics ver. 20.0. Although digital models were smaller than stone models in six distances, there were no significant differences (p>0.05) and non exceeded the clinical acceptable range. The edentulous digital models for full denture fabrication can be considered clinically acceptable.