• Title/Summary/Keyword: Linear Region

Search Result 1,488, Processing Time 0.026 seconds

A Numerical Experiments on the Atmospheric Circulation over a Complex terrain around Coastal Area. Part I : A Verification of Proprietyh of Local Circulation Model Using the Linear Theory (연안부근 복잡지형의 대기유동장 수치실험 I -선형이론을 이용한 국지순환모형의 타당성 검토-)

  • 이화운;김유근;정우식
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.555-558
    • /
    • 1999
  • A sea/land breeze circulation system and a regional scale circulation system are formed at a region which has complex terrain around coastal area and affect to the dispersion and advection of air pollutants. Therefore, it is important that atmospheric circulation model should be well designed for the simulation of regional dispersion of air pollutants. For this, Local Circulation Model, LCM which has an ability of high resolution is used. To verify the propriety of a LCM, we compared the simulation result of LCM with an exact solution of a linear theory over a simple topography. Since they presented almost the same value and pattern of a vertical velocity at the level of 1 km, we had a reliance of a LCM. For the prediction of dispersion and advection of air pollutants, the wind filed should be calculated with high accuracy. A numerical simulation using LCM will provide more accurate results over a complex terrain around coastal area.

  • PDF

Design of H_{\infty} Control for Uncertain Linear Systems with Eigenvalue Assignment Constraint in a Disk (원판내 고유치 배정 조건을 갖는 불확정성 선형 시스템의H_{\infty}제어기 설계)

  • Ma, Sam-Seon;Kim, Jin-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.520-525
    • /
    • 2000
  • This paper deals with the design of H$\infty$ control for uncertain linear systems with the regional eigenvalue assignment constraint. The considered region is a disk in the left half plane and the two types of time-varying uncertainties are considered. We presents a state feedback control that minimize the L2 gain from the disturbance to the measured output as well as it guarantees that all eigenvalues of closed loop are inside a disk. The state feedback control is obtained by checking the feasibility of linear matrix inequalities (LMI's) which are numerically tractable. Finally we give an example to show the applicability and usefulness of our results.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

Design of a Transverse Flux Linear Motor

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • This paper presents design procedures of a transverse flux linear motor (TFLM). The minimum and maximum flux linkage was determined by the simplified equivalent magnetic circuit and estimated average magnetic flux density at the air gap region by considering the shape of applied magnetomotive force (MMF). With this information, the number of turns of each phase winding was calculated based on the amplitude of applied voltage and speed of a mover. The rated current, coil diameter, and winding area were obtained with the aid of an empirical formula for determining the required MMF. The usefulness of the proposed design method for TFLM is verified by the three-dimensional equivalent magnetic circuit network (EMCN) method and the experimental results of prototyped machine.

Structure-Preserving Mesh Simplification

  • Chen, Zhuo;Zheng, Xiaobin;Guan, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4463-4482
    • /
    • 2020
  • Mesh model generated from 3D reconstruction usually comes with lots of noise, which challenges the performance and robustness of mesh simplification approaches. To overcome this problem, we present a novel method for mesh simplification which could preserve structure and improve the accuracy. Our algorithm considers both the planar structures and linear features. In the preprocessing step, it automatically detects a set of planar structures through an iterative diffusion approach based on Region Seed Growing algorithm; then robust linear features of the mesh model are extracted by exploiting image information and planar structures jointly; finally we simplify the mesh model with plane constraint QEM and linear feature preserving strategies. The proposed method can overcome the known problem that current simplification methods usually degrade the structural characteristics, especially when the decimation is extreme. Our experimental results demonstrate that the proposed method, compared to other simplification algorithms, can effectively improve the quality of mesh and yield an increased robustness on noisy input mesh.

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Shape Optimization of a Rotating Two-Pass Duct with a Guide Vane in the Turning Region (회전하는 냉각유로의 곡관부에 부착된 가이드 베인의 형상 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.66-76
    • /
    • 2011
  • The heat transfer and pressure loss characteristics of a rotating two-pass channel with a guide vane in the turning region have been studied using three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis, and the shape of the guide vane has been optimized using surrogate modeling optimization technique. For the optimization, thickness, location and angle of the guide vanes have been selected as design variables. The objective function has been defined as a linear combination of the heat transfer and the friction loss related terms with a weighting factor. Latin hypercube sampling has been applied to determine the design points as design of experiments. A weighted-average surrogate model, PBA has been used as the surrogate model. The guide vane in the turning region does not influence the heat transfer in the first passage upstream of the turning region, but enhances largely the heat transfer in the turning region and the second passage. In an example of the optimization, the objective function has been increased by 13.6%.

Robust Construction of Voronoi Diagram of Circles by Region-Expansion Algorithm (영역 확장법을 통한 평면에서 원들의 보로노이 다이어그램의 강건한 계산)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.52-60
    • /
    • 2019
  • This paper presents a numerically robust algorithm to construct a Voronoi diagram of circles in the plane. The circles are allowed to have intersections among them, but one circle cannot fully contain another circle. The Voronoi diagram is a tessellation of the plane into Voronoi regions of given circles. Each circle has its Voronoi region which is defined by a set of points in the plane closer to the circle than any other circles. The distance from a point p to a circle $c_i$ of center $p_i$ and radius $r_i$ is ${\parallel}p-p_i{\parallel}-r_i$, which is the closest Euclidean distance from p to the circle boundary. The proposed algorithm first constructs the point Voronoi diagram of centers of given circles, then it enlarges each point to the circle and expands its Voronoi region accordingly. This region-expansion process is done by local modifications and after completing this process for the whole circles the desired circle Voronoi diagram can be obtained. The proposed algorithm is numerically robust and we provide with a few examples to show its robustness. The algorithm runs in $O(n^2)$ time in the worst case and O(n) time on average where n is the number of the circles. The experiment shows that the region-expansion algorithm is robust and runs fast with strong linear time behavior.

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.