• Title/Summary/Keyword: Linear Load

Search Result 2,034, Processing Time 0.029 seconds

A-team Based Approach for Reactive Power/Voltage Control Considering Steady State Security Assessment (정태 안전성 평가를 고려한 무효전력 전압제어를 위한 A-team기반 접근법)

  • Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.150-159
    • /
    • 1996
  • In this paper, an A-team(Asynchronous Team ) based approach for Reactive power and volage control considering static security assessment in a power system with infrastructural deficiencies is proposed. Reactive power and voltage control problem is the one of optimally establishing voltage level given several constraints such as reactive generation, voltage magnitude, line flow, and other switchable reactive power sources. It can be formulated as a mixed-integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The security assessment is to estimate the relative robustness of the system in Its present state through the evaluation of data provided by security monitoring. Deterministic approach based on AC load flow calculations is adopted to assess the system security, especially voltage security. A security metric, as a standard of measurement for power system security, producting a set of discrete values rather than binary values, is employed. In order to analyze the above two problems, reactive power/voltage control problem and static security assessment problem, in an integrated fashion for real-time operations, a new organizational structure, called an A-team, is adopted. An A-team is an organization for agents which ale all autonomeus, work in parallel and communicate asynchronously, which is well-suited to the development of computer-based, multi-agent systems for operations. This A-team based approach, although it is still in the beginning stage, also has potential for handling other difficult power system problems.

  • PDF

A STUDY ON COMPARISON OF VARIOUS KINDS OF CLASSII AMALGAM CAVITIES USING FINITE ELEMENT METHOD (유한요소법을 이용한 수종 2급 아말감 와동의 비교연구)

  • Seok, Chang-In;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.432-461
    • /
    • 1995
  • The basic principles in the design of Class II amalgam cavity preparations have been modified but not changed in essence over the last 90 years. The early essential principle was "extension for prevention". Most of the modifications have served to reduce the extent of preparation and, thus, increase the conservation of sound tooth structure. A more recent concept relating to conservative Class II cavity preparations involves elimination of occlusal preparation if no carious lesion exists in this area. To evaluate the ideal ClassII cavity preparation design, if carious lesion exists only in the interproximal area, three cavity design conditions were studied: Rodda's conventional cavity, simple proximal box cavity and proximal box cavity with retention grooves. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method. Linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B option, Gap option and R option model) were developed. B option model was assumed perfect bonding between the restoration and cavty wall. Gap option model(Gap distance: $2{\mu}m$) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). R option model was assumed non-connection between the restoration and cavty wall. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as followed. 1. Rodda's cavity form model showed greater amount of displacement with other two models. 2. The stress and strain were increased on the distal marginal ridge and buccopulpal line angle in Rodda's cavity form model. 3. The stress and strain were increased on the central groove and a part of distal marginal ridge in simple proximal box model and proximal box model with retention grooves. 4. With Gap option, Rodda's cavity form model showed the greatest amount of the stress on distal marginal ridge followed by proximal box model with retention grooves and simple proximal box model in descending order. 5. With Gap option, simple proximal box model showed greater amount of stress on the central groove with proximal box model with retention grooves. 6. Retention grooves in the proximal box played the role of supporting the restorations opposing to loads.

  • PDF

Energy Harvesting Characteristics of Interdigitated (IDT) Electrode Pattern Embedded Piezoelectric Energy Harvester (IDT 전극 패턴 임베디드 압전 에너지 하베스터의 특성)

  • Lee, Min-seon;Kim, Chang-Il;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jang, Yong-Ho;Choi, Beom-Jin;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.581-588
    • /
    • 2016
  • Piezoelectric thick films of a soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material were produced by a conventional tape casting method. Thereafter, the interdigitated (IDT) Ag-Pd electrode pattern was printed on the $25{\mu}m$ thick piezoelectric film at room temperature. Co-firing of the 10-layer laminated piezoelectric thick films was conducted at $1,100^{\circ}C$ and $1,150^{\circ}C$ for 1 h, respectively. Piezoelectric cantilever energy harvesters were successfully fabricated using the IDT electrode pattern embedded piezoelectric laminates for 3-3 operation mode. Their energy harvesting characteristics were investigated with an excitation of 120 Hz and 1 g under various resistive loads (ranging from $10k{\Omega}$ to $200k{\Omega}$). A parabolic increase of voltage and a linear decrease of current were shown with an increase of resistive load for all the energy harvesters. In particular, a high output power of 3.64 mW at $100k{\Omega}$ was obtained from the energy harvester (sintered at $1,150^{\circ}C$).

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Application of Effective Earthquake Force by the Boundary Reaction Method and a PML for Nonlinear Time-Domain Soil-Structure Interaction Analysis of a Standard Nuclear Power Plant Structure (원전구조물의 비선형 시간영역 SSI 해석을 위한 경계반력법에 의한 유효지진하중과 PML의 적용)

  • Lee, Hyeok Ju;Lim, Jae Sung;Moon, Il Hwan;Kim, Jae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-35
    • /
    • 2023
  • Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete (콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가)

  • Jeun, Chang Hyun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.443-462
    • /
    • 2010
  • The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.