• 제목/요약/키워드: Linear Hall sensor

검색결과 32건 처리시간 0.023초

재귀형 최소 자승법을 이용한 자기 위치 센서의 실시간 보상 방법 (On-line Compensation Method for Magnetic Position Sensor using Recursive Least Square Method)

  • 김지원;문석환;이지영;장정환;김장목
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2246-2253
    • /
    • 2011
  • This paper presents the error correction method of magnetic position sensor using recursive least square method (RLSM) with forgetting factor. Magnetic position sensor is proposed for linear position detection of the linear motor which has tooth shape stator, consists of permanent magnet, iron core and linear hall sensor, and generates sine and cosine waveforms according to the movement of the mover of the linear motor. From the output of magnetic position sensor, the position of the linear motor can be detected using arc-tan function. But the variation of the air gap between magnetic position sensor and the stator and the error in manufacturing process can cause the variation in offset, phase and amplitude of the generated waveforms when the linear motor moves. These variations in sine and cosine waveforms are changed according to the current linear motor position, and it is very difficult to compensate the errors using constant value. In this paper, the generated sine and cosine waveforms from the magnetic position sensor are compensated on-line using the RLSM with forgetting factor. And the speed observer is introduced to reduce the effect of uncompensated harmonic component. The approaches are verified by some simulations and experiments.

전류 검출기에 대한 연구 (A Study on current sensor)

  • Lee, Hwan
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.335-340
    • /
    • 1996
  • The item and structure of current detector depends on the current in conductors. The Hall current detector of these detectors is to use the variation of Hall voltage to conductor's current and it is very difficult for the conventional type to detect small current. In this paper we study experimented-method that detect AC current by using the magnetic modulation method the current, 0[mA]~100[mA]. The experiments results in 5 percent against the conventional, 20 percent in linear error, 0.12[.DELTA.mV/.DELTA.mA] to conventional type, 50[.DELTA.mV/.DELTA.mA] in sensitivity. (author). 7 refs., 15 figs.

  • PDF

수동변속기용 비접촉식 변속단 감지센서 개발 (Development of the Non-contacted Gear Detection Sensor for a Manual Transmission)

  • 한창규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.1-7
    • /
    • 2013
  • The present paper relates to a development of the Gear Detection Sensor for automotive manual transmission. To detect air gap from control finger to detecting zone of sensor based on non-contacted method, permanent magnet and linear type Hall IC are mounted in this sensor. Control finger is machined to 3 step heights to detect 3 gear stages such as In-Gear, Normal and Rear. After conducting actual experimentation based on exclusive Jig and FEM, it is described to consider possibility for automotive application of Gear Detection Sensor.

지오메트리 피그용 캘리퍼 시스템 개발 (Development of Caliper System for Geometry PIG)

  • 유휘룡;김동규;조성호;박상호;박승수;박대진;구성자;노용우;박관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.228-234
    • /
    • 2001
  • NTMS(Non-contact Tilted-angle Measuring System) is developed by using the principle that the magnetic field of an anisotropic magnet's inner space is uniform and it's possible to measure the strength of the magnetic field using a linear hall effect sensor. In order to implement the caliper system of the geometry PIG(Pipeline Inspection Gauge) which has high accuracy and proper output voltage of the hall sensor without additional driving module or a signal amplifier, it is necessary to consider the size of the magnet, the inner space and back-yoke and the position of pin-hole in the magnet. So the optimal design method of the caliper system is proposed through analysis of NTMS's magnetic field adopting a FEM(Finite Element Method). The experimental results show that the developed caliper system can be used for the geometry pig with good performances.

  • PDF

Development of the Caliper System for a Geometry PIG Based on Magnetic Field Analysis

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai;Park, Gwan-Soo;Park, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1835-1843
    • /
    • 2003
  • This paper introduces the development of the caliper system for a geometry PIG (Pipeline Inspection Gauge). The objective of the caliper system is to detect and measure dents, wrinkles, and ovalities affect the pipe structural integrity. The developed caliper system consists of a finger arm, an anisotropic permanent magnet, a back yoke, pins, pinholes and a linear hall effect sensor. The angle displacement of the finger arm is measured by the change of the magnetic field in sensing module. Therefore the sensitivity of the caliper system mainly depends on the magnitude of the magnetic field inside the sensing module. In this research, the ring shaped anisotropic permanent magnet and linear hall effect sensors were used to produce and measure the magnetic field. The structure of the permanent magnet, the back yoke and pinhole positions were optimized that the magnitude of the magnetic field range between a high of 0.1020 Tesla and a low of zero by using three dimensional nonlinear finite element methods. A simulator was fabricated to prove the effectiveness of the developed caliper system and the computational scheme using the finite element method. The experimental results show that the developed caliper system is quite efficient for the geometry PIG with good performance.

정현파 홀센서를 이용한 저가형 TFLM 드라이브의 위치추정 알고리즘 (Low cost position estimation algorithm of TFLM drives using hall effect sensor)

  • 이정효;이원철;유영환;원충연;이병국
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.357-361
    • /
    • 2007
  • Transverse Linear Motor(TFLM) has been using in many areas of manufacture such as LCD, PDP construction and etc. However, the areas of TFLM application become wider, it needs a modification for new application. Above all, the conventional position estimation method is expensive in proportional to the length of the motor. Therefore, we need new position estimation algorithm using hall effect sensor.

  • PDF

선형 홀센서를 이용한 정현파 엔코더의 DSP 구현 (DSP Implementation of a Sinusoidal Encoder using linear Hall Sensor)

  • 황정호;정찬수
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.298-302
    • /
    • 2012
  • The linear encoder used in the BLAC driving circuit consists usually analog type sensor, and need signal transform from analog sinusoidal to digital one for application in the PWM algorithm that is used to control motor current. When the motor is driven in low speed, it is required many operations and higher quality DSP to convert the hole sensor signal to digital one with enough resolution. In this paper, the another method to convert that signal with enough resolution without calculation of sine function is proposed. This is very simple and have high resolution even if the motor is driving in low speed. To verify the proposed method, BLAC motor is used, and it is proved that the motor is tracking well the reference step signal in the low speed as well as in the high one.

엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구 (Experimental Study on Position Control System Using Encoderless Magnetic Motion)

  • 김홍윤;윤영민;심호근;권영목;허훈
    • 대한기계학회논문집A
    • /
    • 제40권1호
    • /
    • pp.9-16
    • /
    • 2016
  • 영구자석 선형 동기전동기(PMLSM : Permanent Magnet Linear Synchronous Motor)의 구조에서, 영구자석이 레일에 고정되고 코일이 움직이는 기존 영구자석 선형 동기전동기와 달리(영구자석 = 고정자, 코일 = 이동자), 코일이 고정되고, 영구자석을 움직이는(영구자석 = 이동자, 코일 = 고정자) 구조의 위치제어시스템을 제안하고자 한다. 위치 측정은 2개의 홀센서를 사용한다. 이 방식은 엔코더 출력 펄스 신호 대신에 2개의 홀센서에서 발생되는 구형파 신호를 4체배하여 이동자의 속도와 위치를 추정한다. 구형파를 발생시키는 2개의 홀센서로 PMLSM의 벡터제어를 구현하였을 때 정격속도 범위 내에서 안정적이고 효율적으로 제어되는 것을 시뮬레이션을 통하여 입증하였다. 또 하드웨어 실험으로 시스템의 위치제어성능은 $30{\sim}50{\mu}m$의 측정범위 내에서 $10{\sim}20{\mu}m$의 정밀도로 기존시스템보다 2배나 개선되며, 경제적 효율성과 제안된 위치제어 개념의 실용적인 유용성도 확인하였다. 2개의 홀센서를 이용한 벡터제어는 협소한 공간에도 취부 할 수 있으므로 엔코더나 레졸버의 장착이 어려운 시스템에 적용될 수 있다.

자기스케일을 이용한 비접촉식 변위센서 (Noncontact displacement sensors using magnetic scale)

  • 이성필;서영진
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.197-201
    • /
    • 2009
  • This paper studies on the noncontact displacement sensor system to detect the displacement of the cylinder rod. For an inexpensive and a simple process, magnetic scales are printed on the cylinder rod, and magnetized by the specially designed magnetizer that has an yoke through the alternation of N and S pole. Noncontact displacement sensor system consists of cylinder with magnetic scales, Hall sensor, linear guide, controller and display. The system can detect the displacement of moving cylinder with 5 cm/sec in the case of 1 mm magnetic scale. It shows a possibility of position detection of hydraulic cylinder and air cylinder.