• Title/Summary/Keyword: Linear Hall sensor

Search Result 32, Processing Time 0.023 seconds

Least Mean Square Estimator for Motor Frequency Measurement Based on Linear Hall Sensor (선형 홀센서 기반의 모터 회전속도 측정을 위한 평균 최소 자승 추정기)

  • Choi, Ga-Hyoung;Ra, Won-Sang;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.866-874
    • /
    • 2008
  • Motor frequency can be measured by a hall sensor. Among the many hall sensors, a linear type hall sensor is good at high accuracy frequency measuring problem. However, in general, this linear type hall sensor has DC offset which can vary along sensor's operating voltage change. Therefore, In motor frequency measurement problem using the linear hall sensor, it needs an estimator that can estimate frequency and DC offset simultaneously. In this paper, we propose the least mean square estimator to estimate motor frequency. To verify its performance, we compare the LMS estimator with a commercial analog tachometer. Experimental results shows the proposed LMS estimator works well in varying frequency and stationary DC offset.

A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator (선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현)

  • Gu, Jeong-Hoi;Song, Chi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

A Study on InSb Magnetic Sensor using Hall Effect (Hall효과를 이용한 InSb가 자기 Sensor에 관한 연구)

  • Jeon, Chun-Saeng
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.113-116
    • /
    • 1994
  • InSb thin film magnetic sensor, which have been prepared on glass substrate by vacuum evaporation, is investigated in this paper. The dependance of Hall voltage on magnetic field and temperature is examined by Hall effect. The variation of Hall voltage with magnetic field is almost linear at constant current drive but it is deviated from the linearity at constant voltage drive. Hall voltage decreases as the ambient temperature increases, so it is necessary to take into account the temperature effect when the InSb thin film is used as magnetic sensor.

  • PDF

Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator (선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현)

  • Gu, Jeong-Hoi;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

Characteristics of Ni-Fe Core Materials for Hall Current Sensor (홀소자 전류센서를 위한 니켈강 코어 소재 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.505-509
    • /
    • 2014
  • In this research, the structural, physical and electrical characteristics of Ni-Fe core chosen to minimize the errors of the Hall current sensors were investigated and Hall current sensor using Ni-Fe core was fabricated. In the result, the fabricated Ni-Fe sample exhibited the maximum hardness about 29.5 GPa and the low friction coefficient about 0.35, and electrical resistivity over $90mOhm{\cdot}cm$. And also Hall current sensor using the fabricated Ni-Fe core showed linear current-voltage properties for DC current at $25^{\circ}C$ temperature.

The Position Decision Comparison Experiment of Hall and Photo Sensors in the Linear Stage (홀 센서와 포토 센서를 이용하는 선형 스테이지에서 위치결정 비교 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decisions. Though ball-screw driven linear stages equipped with encoders have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped accurate home sensors. High precision machining technology has become one of the most important aspects of the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. This study is performed to experimentally compare the repeatability for home position decisions in the case of photo sensors and hall sensors as a home switch of the ball-screw driven linear stage.

Comparisons of Linear Characteristic for Shape of Stator Teeth of Hall Effect Torque Sensor

  • Lee, Boram;Kim, Young Sun;Park, Il Han
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.285-290
    • /
    • 2012
  • Electric Power Steering (EPS) system is superior to conventional Hydraulic Power Steering (HPS) system in aspect of fuel economy and environmental concerns. The EPS system consists of torque sensor, electric motor, ECU (Electric Control Unit), gears and etc. Among the elements, the torque sensor is one of the core technologies of which output signal is used for main input of EPS controller. Usually, the torque sensor has used torsion bar to transform torsion angle into torque and needs linear characteristic in terms of flux variation with respect to rotation angle of permanent magnet. The torsion angle of both ends of a torsion bar is measured by a contact variable resistor. In this paper, the sensor is accurately analyzed using 3D finite element method and its characteristics with respect to four different shapes of the stator teeth are compared. The four shapes are rectangular, triangular, trapezoidal and circular type.

PMSM Angle Detection Based on the Edge Field Measurements by Hall Sensors

  • Kim, Jae-Uk;Jung, Sung-Yoon;Nam, Kwang-Hee
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.300-305
    • /
    • 2010
  • This paper presents a two Hall sensor method for rotor angle detection in permanent magnet synchronous motors (PMSM). To minimize the implementation complexity, the system is designed to measure the edge field of permanent magnet pieces. However, there are nonlinearities in the measured values of the edge field. In this work, an angle correction algorithm is proposed, and the improvements in accuracy are verified through experiments. Finally, a field orientation controller is constructed with the proposed angle detection algorithm.

A Study on the Development of Hall Effect Sensor for Hydraulic Locking Alarm in Ship's Steering Gear (선박용조타기의 Hydraulic Locking Alarm용 Hall Effect Sensor 개발에 관한 연구)

  • Lee, Jung-Min;Chung, Won-Jee;Lim, Dong-Jae;Choi, Kyung-Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2019
  • The LVDT (Linear Variable Displacement Transducer) type sensor used for the existing ship's steering gear is simple on / off that does not perform proportional control operation to the control & unloading device. When the main spool is located at both extremes, It is reflected in the price by using an expensive sensor for import. In this paper, the Hall Effect Sensor is applied to Hydraulic Locking Alarm to analyze classification rules, structure, characteristics and operation principle of valves, and research on localization development in terms of cost reduction. The comparative analysis of the existing prototypes and the cause analysis of the problems were carried out, and the structural analysis showed satisfactory results within the allowable stress range. In addition, it was verified through experiments that the actual operation is realized by applying the actual developed product, and it was confirmed that the load on the maximum value exceeds the allowable maximum load even in the case of the universal tensile test in preparation for the departure of the rod casing.