• 제목/요약/키워드: Linear Approximation Technique

검색결과 98건 처리시간 0.028초

Seat Allocation Model for Single Flight-leg using Linear Approximation Technique (선형근사 기법을 이용한 단일비행구간의 좌석할당 모형)

  • Song, Yoon-Sook;Lee, Hwi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.65-75
    • /
    • 2008
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

  • PDF

Seat Allocation Model for Single Flight-leg using Linear Approximation Technique (선형근사 기법을 이용한 단일비행구간의 좌석할당 모형)

  • Song, Yoon-Sook;Lee, Hwi-Young;Yoon, Moon-Gil
    • Korean Management Science Review
    • /
    • 제26권3호
    • /
    • pp.117-131
    • /
    • 2009
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

Piece-wise linear estimation of mechanical properties of materials with neural networks

  • Shin, Inho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.181-186
    • /
    • 1992
  • Many real-world problems are concerned with estimation rather than classification. This paper presents an adaptive technique to estimate the mechanical properties of materials from acoustoultrasonic waveforms. This is done by adapting a piece-wise linear approximation technique to a multi-layered neural network architecture. The piece-wise linear approximation network (PWLAN) finds a set of connected hyperplanes that fit all input vectors as close as possible. A corresponding architecture requires only one hidden layer to estimate any curve as an output pattern. A learning rule for PWLAN is developed and applied to the acousto-ultrasonic data. The efficiency of the PWLAN is compared with that of classical backpropagation network which uses generalized delta rule as a learning algorithm.

  • PDF

Wavelet network approximation and coefficient learning of linear-time-varying system (시변 선형 시스템의 웨이브렛망 근사화와 가중치의 학습)

  • 이영석;김동옥;서보혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.728-731
    • /
    • 1997
  • This paper discusses approximation modelling of discrete-time linear time-varying system(LTVS). The wavelet transform is considered as a tool for representing and approximating a LTVS. The joint time-frequency properties of wave analysis are appropriate for describing the LTVS. Simulation results is included to illustrate the potential application of the technique.

  • PDF

Optimum Preliminary Ship Design Technique by Using Sophisticated Sequential Linear Approximation Method -Development and Application of User Oriented Design Optimization Language- (고성능 순차적 선형화 방법을 이용한 선박 최적 초기설계 기법 -최적화 설계 전용 언어의 개발 및 응용-)

  • K.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • 제25권3호
    • /
    • pp.35-45
    • /
    • 1988
  • This paper presents a sophisticated Sequential Linear Approximation Method(SLAM) to solve nonlinear optimization problem and the performance of this method is compared with those of the Penalty Function Method(SUMT), Tangent Search Method(TSM) and Flexible Tolerance Method(FTM). To improve the convenience and flexibility in using the proposed SLAM, an user oriented design optimization language is developed and the application examples are shown for the optimization of propeller principal dimensions and the optimization of bulk carrier principal particulars.

  • PDF

Influence of the Diagonal Dominance of Modal Damping Matrix on the Decoupling Approximation (모드 댐핑 행렬의 대각선 성분 우세가 비연관화 근사에 미치는 영향)

  • 김정수;최기흥;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권8호
    • /
    • pp.1963-1970
    • /
    • 1993
  • A simple technique to decouple the modal equations of motion of a linear nonclassically damped system is to neglect the off-diagonal elements of the modal damping matrix. This is called the decoupling approximation. It has generally been conceived that smallness of off-diagonal elements relative to the diagonal ones would validate its use. In this study, the relationship between elements of the modal damping matrix and the error arising from the decoupling approximation is explored. It is shown that the enhanced diagonal dominance of the modal damping matrix need not diminish the error. In fact, the error may even increase. Moreover, the error is found to be strongly dependent on the exitation. Therefore, within the practical range of engineering applications, diagonal dominance of the modal damping matrix would not be sufficient to supress the effect of modal coupling.

A New Method for Approximation of Linear System in Frequency Domain (주파수영역에서 선형시스템 간략화를 위한 새로운 방법)

  • Kwon, Oh-Shin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제24권4호
    • /
    • pp.583-589
    • /
    • 1987
  • A new approximation method is proposed for the linear model reduction of high order dynamic systems. This mehtod is based upon the denominator table(D-table) and time moment-matching technique. The denominator table(D-table) is used to obtain the denominator polynomial of reduced-order model, and the numerator polynomial is obtained by time moment-matching method. This proposed method does not require the calculation of the alpha-beta expansion and reciprocal transformation which should be calculadted by Routh approximation method. The advantages of the proposed method are that it is computationally every attractive better than Routh approximation method and the reduced model is stable Il the original system is stable.

  • PDF

Linear Feature Detection from Complex Scene Imagery (복잡한 영상으로 부터의 선형 특징 추출)

  • 송오영;석민수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제20권1호
    • /
    • pp.7-14
    • /
    • 1983
  • Linear feature such as lines and curves are one of important features in image processing. In this paper, new method of linear feature detection is suggested. Also, we have studied approximation technique which transforms detected linear feature into data structure for the practical. This method is based on graph theory and principle of this method is based on minimal spanning tree concept which is widely used in edge linking process. By postprocessing, Hairs and inconsistent line segments are removed. To approximate and describe traced linear feature, piecewise linear approximation is adapted. The algorithm is demonstrated through computer simulations.

  • PDF

A Seat Allocation Problem for Package Tour Groups in Airlines (항공사 패키지 여행 단체수요의 좌석할당 문제)

  • Song, Yoon-Sook;Lee, Hwi-Young;Yoon, Moon-Gil
    • Korean Management Science Review
    • /
    • 제25권1호
    • /
    • pp.93-106
    • /
    • 2008
  • This study is focused on the problem of seat allocation for group travel demand in airlines. We first explain the characteristic of group demand and its seat allocation process. The group demand in air travel markets can be classified into two types : incentive and package groups. Allocating seats for group demand depends on the types of group demand and the relationship between airlines and travel agents. In this paper we concentrate on the package group demand and develop an optimization model for seat allocation on the demand to maximize the total revenue. With some assumptions on the demand distribution and the linear approximation technique, we develop a mixed IP model for solving our problem optimally. From the computational experiments, we can find our optimization model can be applied well for real-world application.