• 제목/요약/키워드: Lineage markers

검색결과 66건 처리시간 0.025초

Decline in sestrin 2 expression during aging shifts mesenchymal stem cell differentiation from osteogenic to adipogenic lineage

  • Do Yeun Kim;Hyun-Jung Park;Jeong-Hwa Baek
    • International Journal of Oral Biology
    • /
    • 제49권3호
    • /
    • pp.69-78
    • /
    • 2024
  • Sestrin 2 (SESN2) is a member of the sestrin family of stress-induced proteins that negatively regulate aging-associated biological processes. This study aims to investigate the role of SESN2 in regulating the differentiation potential and senescence of mesenchymal stem cells (MSCs) derived from young and elderly donors. Bulk RNA sequencing revealed a common decline in the SESN2 mRNA levels in MSCs from elderly individuals, which was confirmed via reverse transcription-polymerase chain reaction and western blot analyses. SESN2 knockdown in MSCs from young donors resulted in phenotypic changes similar to those in MSCs from elderly donors, including an enhanced expression of senescence and adipogenic markers and diminished expression of osteogenic markers. To confirm the effect of decreased SESN2 expression on osteogenic and adipogenic differentiation, we induced Sesn2 knockdown in mouse bone marrow-derived MSCs. Sesn2 knockdown suppressed the mRNA expression of osteogenic marker genes, alkaline phosphatase activity, and matrix mineralization. Furthermore, Sesn2 knockdown enhanced mRNA expression of the adipogenic marker genes and intracellular lipid accumulation. These results suggest that a decline in SESN2 expression during aging contributes to the shift of MSC differentiation from osteogenic to adipogenic lineage.

Differential characterization of myogenic satellite cells with linolenic and retinoic acid in the presence of thiazolidinediones from prepubertal Korean black goats

  • Subi, S.;Lee, S.J.;Shiwani, S.;Singh, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.439-448
    • /
    • 2018
  • Objective: Myogenic satellite cells were isolated from semitendinosus muscle of prepubertal Korean black goat to observe the differential effect of linolenic and retinoic acid in thepresence of thiazolidinediones (TZD) and also to observe the production insulin sensitive preadipocyte. Methods: Cells were characterized for their stemness with cluster of differentiation 34 (CD34), CD13, CD106, CD44, Vimentin surface markers using flow cytometry. Cells characterized themselves as possessing significant (p<0.05) levels of CD13, CD34, CD106, Vimentin revealing their stemness potential. Goat myogenic satellite cells also exhibited CD44, indicating that they possessed a % of stemness factors of adipose lineage apart from their inherent stemness of paxillin factors 3/7. Results: Cells during proliferation stayed absolutely and firmly within the myogenic fate without any external cues and continued to show a significant (p<0.05) fusion index % to express myogenic differentiation, myosin heavy chain, and smooth muscle actin in 2% horse serum. However, confluent myogenic satellite cells were the ones easily turning into adipogenic lineage. Intriguingly, upregulation in adipose specific genetic markers such as peroxisome proliferation-activated receptor ${\gamma}$, adiponectin, lipoprotein lipase, and CCAAT/enhancer binding protein ${\alpha}$ were observed and confirmed in all given treatments. However, the amount of adipogenesis was found to be statistically significant (p<0.01) with linolenic acid as compared to retinoic acid in combination with TZD's. Conclusion: Retinoic acid was found to produce smaller preadipocytes which have been assumed to have insulin sensitization and hence retinoic acid could be used as a potential agent to sensitize tissues to insulin in combination with TZD's to treat diabetic conditions in humans and animals in future.

The change of Phytophthora infestans Populations in South Korea using Traditional Markers and Genome Analyses

  • Do Hee Kwon;Jin Hee Seo;Yong Ik Jin;Gun Ho Jung;Jang Gyu Choi;Gyu Bin Lee;Kwang Ryong Jo;Jaeyoun Yi;Hwang Bae Sohn;Young Eun Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.257-257
    • /
    • 2022
  • Late blight, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, has been the most important disease limiting potato production worldwide. P. infestans undergo major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to divide the 86 South Korea isolates into six clonal lineages: KR_1_A1, KR_2_A2, SIB-1, US-11, SIB-1 like, and KR-2 like. We documented the emergence of a new lineage, termed SIB-1 like, and KR-2 like, and their rapid replacement of other lineages to exceed 35% of the pathogen population across South Korea. Genome analyses of the Korean P. infestans populations revealed extensive genetic polymorphism, particularly in effector genes. Importantly, SIB-1 like isolates carry an intact Avr8 effector gene that triggers resistance in potato carrying the corresponding R immune receptor gene R8 cloned from Solarium demissum. These findings point toward a strategy for deploying genetic resistance to mitigate the impact of the SIB-1 like lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. Further study is being done on pathogenicity of the SIB-1 like isolates on cultivated potatoes and changes in expression patterns of disease effector genes within the SIB-1 like isolates

  • PDF

Genome-Wide SSR 마커를 이용한 주요 산지별 참당귀의 유전다양성 분석 (Genetic Diversity of Angelica gigas Nakai Collected in Korea using Genome-Wide SSR Markers)

  • 정대희;박윤미;김기윤;박홍우;전권석;김만조;길진수;이이;엄유리
    • 한국약용작물학회지
    • /
    • 제27권6호
    • /
    • pp.376-382
    • /
    • 2019
  • Background: Angelica gigas Nakai has been used as an herbal medicine in Eastern Asia for treating disorders in women for a long time. To date there are no studies on the genetic diversity of A. gigas. The present study aimed to study the genetic diversity of A. gigas variants using genome-wide simple sequence repeat (SSR) markers. Methods and Results: The genetic diversity of 199 variants of A. gigas cultivated in of different regions, was analyzed using 5 genome-wide SSR markers. The results revealed that the genetic variants were very diverse, and genetic analysis using the 5 SSR markers revealed high diversity among the variants. Conclusions: It is expected that the development of the true Angleical cultivar, by studying the system and group selection, can be achieved by genetic analysis using the developed markers, for generating a genetically fixed lineage and group selection.

Detection of Neural Fates from Random Differentiation : Application of Support Vector MachineMin

  • Lee, Min-Su;Ahn, Jeong-Hyuck;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Embryonic stem cells can be differentiated into various types of cells, requiring a tight regulation of transcription. Biomarkers related to each lineage of cells are used to guide the differentiation into neural or any other fates. In previous experiments, we reported the guided differentiation (GD)-specific genes by comparing profiles of random differentiation (RD). Interestingly 68% of differentially expressed genes in GD overlap with that of RD, which makes it difficult for us to separate the lineages by examining several markers. In this paper, we design a prediction model to identify the differentiation into neural fates from any other lineage. From the profiles of 11,376 genes, 203 differentially expressed genes between neural and random differentiation were selected by random variance T-test with 95% confidence and 5% false discovery rate. Based on support vector machine algorithm, we could select 79 marker genes from the 203 informative genes to construct the optimal prediction model. Here we propose a prediction model for the prediction of neural fates from random differentiation which is constructed with a perfect accuracy.

Taxonomic reconsideration of Chinese Lespedeza maximowiczii (Fabaceae) based on morphological and genetic features, and recommendation as the independent species L. pseudomaximowiczii

  • JIN, Dong-Pil;XU, Bo;CHOI, Byoung-Hee
    • 식물분류학회지
    • /
    • 제48권3호
    • /
    • pp.153-162
    • /
    • 2018
  • Lespedeza maximowiczii C. K. Schneid. (Fabaceae) is a deciduous shrub which is known to be distributed in the temperate forests of China, Korea and on Tsushima Island of Japan. Due to severe morphological variations within species, numerous examinations have been conducted for Korean L. maximowiczii. However, the morphology of Chinese plants has not been studied as thoroughly, despite doubts about their taxonomy. To clarify this taxonomic issue, we investigated morphological characters and undertook a Bayesian clustering analysis with microsatellite markers. The morphological and genetic traits of Chinese individuals varied considerably from those of typical L. maximowiczii growing in Korea. For example, petals of the former had a different shape and bore long claws, while the calyx lobes were diverged above the middle and the upper surface of the leaflet was pubescent. Their terete buds and spirally arranged bud scales were distinct from those within the series/section Heterolespedeza, which includes L. maximowiczii. Our Bayesian clustering analysis additionally included L. buergeri as an outgroup. Those results indicated that the Chinese samples clustered into a lineage separated from L. maximowiczii (optimum cluster, K = 2), despite the fact that the latter is grouped into the same lineage with L. buergeri. Therefore, we treat those Chinese plants as a new species with the name L. pseudomaximowiczii.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

Myogenic Satellite Cells and Its Application in Animals - A Review

  • Singh, N.K.;Lee, H.J.;Jeong, D.K.;Arun, H.S.;Sharma, L.;Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1447-1460
    • /
    • 2009
  • Myogenic satellite cells have been isolated and identified by several recently elucidated molecular markers. Furthermore, knowledge about the precise function of these markers has provided insight into the early and terminal events of satellite cells during proliferation, differentiation, transdifferentiation, specification and activation. Recently, quiescent myogenic satellite cells have been associated with possession of Pax 3 and 7 that represent pluripotent stem cells capable of differentiating into other lineages. However, the mechanism by which myogenic satellite cells attain pluripotent potential remain elusive. Later, transdifferentiating ability of these cells to another lineage in the absence or presence of certain growth factor/ or agents has revolutionized the scope of these pluripotent myogenic satellite cells for manipulation of animal production (in terms of quality and quantity of muscle protein) and health (in terms of repair of skeletal muscle, cartilage or bone).

Comparative Analysis for In Vitro Differentiation Potential of Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Multipotent Spermatogonial Stem Cells into Germ-lineage Cells

  • Go, Young-Eun;Kim, Hyung-Joon;Jo, Jung-Hyun;Lee, Hyun-Ju;Do, Jeong-Tae;Ko, Jung-Jae;Lee, Dong-Ryul
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.41-52
    • /
    • 2011
  • In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/$m{\ell}$ BMP4 or 0.01 ${\mu}M$ RA. In the BMP4-treated group, GFR-${\alpha}1$ and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR-${\alpha}1$ and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-${\alpha}6$, GFR-${\alpha}1$, CD90/Thy1 and immunocytochemistry using GFR-${\alpha}1$ antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.

다중 역전사 중합효소 연쇄 반응(Multiplex RT-PCR)을 이용한 인간배아 줄기세포 및 유도만능 줄기세포의 효과적인 분화 양상 조사 (Effective Application of Multiplex RT-PCR for Characterization of Human Embryonic Stem Cells/ Induced Pluripotent Stem Cells)

  • 김정모;조윤정;손온주;홍기성;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Techniques to evaluate gene expression profiling, such as sufficiently sensitive cDNA microarrays or real-time quantitative PCR, are efficient methods for monitoring human pluripotent stem cell (hESC/iPSC) cultures. However, most of these high-throughput tests have a limited use due to high cost, extended turn-around time, and the involvement of highly specialized technical expertise. Hence, there is an urgency of rapid, cost-effective, robust, yet sensitive method development for routine screening of hESCs/hiPSCs. A critical requirement in hESC/hiPSC cultures is to maintain a uniform undifferentiated state and to determine their differentiation capacity by showing the expression of gene markers representing all three germ layers, including ectoderm, mesoderm, and endoderm. To quantify the modulation of gene expression in hESCs/hiPSC during their propagation, expansion, and differentiation via embryoid body (EB) formation, we developed a simple, rapid, inexpensive, and definitive multimarker, semiquantitative multiplex RT-PCR platform technology. Among the 9 gene primers tested, 5 were pluripotent markers comprising set 1, and 3 lineage-specific markers were combined as set 2, respectively. We found that these 2 sets were not only effective in determining the relative differentiation in hESCs/hiPSCs, but were easily reproducible. In this study, we used the hES/hiPS cell lines to standardize the technique. This multiplex RT-PCR assay is flexible and, by selecting appropriate reporter genes, can be designed for characterization of different hESC/hiPSC lines during routine maintenance and directed differentiation.