• Title/Summary/Keyword: Line-to-ground fault

Search Result 257, Processing Time 0.028 seconds

A Study on Quench Characteristics of HTSC Element in Integrated Three-phase Flux-lock Type Superconducting Fault Current Limiter (일체화된 삼성자속구속형 고온초전도 전류제한기의 퀜치특성에 관한 연구)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Choi, Byoung-Hawn;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.233-234
    • /
    • 2007
  • We investigated the quench characteristics in integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on one iron core with the same turn's ratio between coil 1 and coil 2 for each single phase. To study the quench characteristics of the SFCL, the experiments was performed on various fault type such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the generated point of element resistances was different on various fault type.

  • PDF

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

Fault Location Algorithm with Ground Capacitance Compensation for Long Parallel Transmission Line (장거리 병렬 송전선로용 대지 정전용량 보상에 의한 고장점 표정 알고리즘)

  • Park, Chul-Won;Kim, Sam-Ryong;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • This paper deals with an improved fault location algorithm with compensation ground capacitance through distributed parameter for a long parallel T/L. For the purpose of fault locating algorithm non-influenced by source impedance and fault resistance, the loop method was used in the system modeling analysis. This algorithm uses a positive and negative sequence of the fault current for high accuracy of fault locating calculation. Power system model of 160km and 300km long parallel T/L was simulated using EMTP software. To evaluate of the proposed algorithm, we used the several different cases 64 sampled data per cycle. The test results show that the proposed algorithm was minimized the error factor and speed of fault location estimation.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Quench Characteristics of Three-Phase Flux-Lock type SFCL connected Additive Winding According to Fault Types (가극 결선한 삼상 자속구속형 초전도 한류기의 사고유형별 퀜치 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Park, Chung-Ryul;Lim, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.155-156
    • /
    • 2005
  • We investigated the quench characteristics of the flux-lock type superconducting fault current limiter (SFCL) integrated three-phase according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground. The structure of integrated three-phase flux-lock type SFCL consists of single core which have three-phase flux-lock reactors. The superconducting elements connected sound phase as well as fault phase happened to quenching. Therefore we conformed that the superconducting elements were dependent.

  • PDF

An Algorithm of fault Location Technique for Long Transmission Line (송전선로의 고장점 표정 알고리즘)

  • Park, C.W.;Kim, S.R.;Shin, M.C.;Nam, S.B.;Lee, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.145-147
    • /
    • 2002
  • In this paper, the improved fault locating method using distributed parameter which calculating the reduced voltage and current according to the ground capacitance in long transmission line was proposed. For the purpose of the fault locating algorithm non influenced source impedance, the loop method was used in the system modeling analysis. To enhance the fault locating, zero sequence of the fault current which is variable according to ground capacitance was not used but positive and negative sequence. System model was simulated using EMTP software. To verify the accuracy of proposed method, in different cases 64 sampled data per cycle was used and 160km and 300km long transmission line has fault resistance $0{\Omega}\;and\;100{\Omega}$ respectively was compared.

  • PDF

A Study on the Gustafson-Kessel Clustering Algorithm in Power System Fault Identification

  • Abdullah, Amalina;Banmongkol, Channarong;Hoonchareon, Naebboon;Hidaka, Kunihiko
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1798-1804
    • /
    • 2017
  • This paper presents an approach of the Gustafson-Kessel (GK) clustering algorithm's performance in fault identification on power transmission lines. The clustering algorithm is incorporated in a scheme that uses hybrid intelligent technique to combine artificial neural network and a fuzzy inference system, known as adaptive neuro-fuzzy inference system (ANFIS). The scheme is used to identify the type of fault that occurs on a power transmission line, either single line to ground, double line, double line to ground or three phase. The scheme is also capable an analyzing the fault location without information on line parameters. The range of error estimation is within 0.10 to 0.85 relative to five values of fault resistances. This paper also presents the performance of the GK clustering algorithm compared to fuzzy clustering means (FCM), which is particularly implemented in structuring a data. Results show that the GK algorithm may be implemented in fault identification on power system transmission and performs better than FCM.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

Analysis of Characteristic Frequency along Fault Distance on a Transmission Line (송전 선로의 사고 거리에 따른 특성 주파수 해석)

  • 남순열;홍정기;강상희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.432-437
    • /
    • 2004
  • Since the characteristic frequency is decreased in proportion to the fault distance, the characteristic frequency component may be insufficiently eliminated by a low-pass filter on a long transmission line. In order to set a standard for the cut-off frequency of the low-pass filter, this paper proposes a method for obtaining the characteristic frequencies due to line faults. The application results of the proposed method are presented for line to ground (LG) faults and line to line (LL) faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault signals under different fault locations and fault inception angles. By comparison between the characteristic frequencies obtained from the proposed method and the EMTP simulation, it is shown that the proposed method accurately obtains the characteristic frequency.

A Study on Estimation of Breakdown Location using UHF Sensors for Gas Insulated Transmission Lines (UHF센서를 이용한 가스절연송전선로 절연파괴 위치 추정에 관한 연구)

  • Park, Hung-Sok;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.805-810
    • /
    • 2011
  • This paper deals with the method and algorithm used to find fault locations in gas insulated transmission line. The method uses UHF sensors and digital oscilloscope to detect discharge signals emitted to the outside through insulating spacer in the event of breakdown inside GIL. UHF sensors are the external type and installed at outside of insulating spacers of GIL. And we used wavelet signal processing to analyze the discharge signals and confirm the exact fault location findings in the GIL test line. This method can overcome demerit of TDR(Time Domain Reflectometer) method having been applied to detect fault location for conventional underground transmission lines, and Ground Fault Sensors used in conventional GIS systems. TDR method requires high level of specialty and experience in analyzing the measured signals. Ground fault sensors are installed inside GIL and can be destroyed by high transient voltage. This paper's method can simplify the fault location process and minimize the damage of sensors. In addition, this method can estimate the fault location only by the time difference when discharge signals are arrived to detecting sensors at the ends of GIL sections without reasons of breakdown. To test the performance of our method, we installed sensors at the ends of test line of GIL(84m) and sensed discharge signals occurred in GIL, energized with AC voltage generator up to 700kV.