• Title/Summary/Keyword: Line of Sight Vector

Search Result 26, Processing Time 0.022 seconds

Line of Sight Vector Estimation using UWB for Augmented Reality Based Indoor Location Monitoring System

  • Chun, Sebum;Seo, Jae-Hee;Lee, Sangwoo;Heo, Moon-Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.145-156
    • /
    • 2016
  • A variety of methods for indoor positioning systems have been underway to ensure the safety of emergency rescuers who are working in dangerous situations such as fire fighters. However, since most systems display locations of rescue workers in two-dimension (2D)-based maps, it is difficult for a commander located in the outside to recognize locations of rescuers inside the building intuitively. An augmented reality (AR)-based indoor positioning monitoring system can display locations of rescuer inside the building that can be seen by commanders to help intuitive recognition of positioning. To monitor AR-based indoor positioning, it is necessary to have an estimation technique of line of sight vector of observers. In the present study, an estimation technique of a line of sight vector using ultra-wide band tranceiver installed inside the indoor to trace locations is presented.

Calibration of Low-cost Inertia Navigation System with Sun Line of Sight Vector (태양시선벡터를 이용한 저가 관성항법시스템의 보정)

  • Jang, Se-Ah;Choi, Kee-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.774-778
    • /
    • 2008
  • The inaccuracy of inertial sensors used in low cost IMU's limits the usage to ARS, at best. Sensor fusion technologies are widely used to overcome this problem. GPS is the most popular secondary sensor, but GPS alone cannot fully compensate the IMU errors in the initial alignment process and rectilinear flights. This paper presents a new concept of aiding the low cost IMU with the sun line of sight vector. The simulation and experimental results in this paper proves that aiding of INS/GPS with the sun line of sight vector increases the observability and improves accuracy remarkably.

Observability Analysis of Two Spacecraft System Using Relative Line of Sight Vector Measurements

  • Jo-Ryeong Im;Seung-U Lee;Hak Jeong Kim;Ju-Jin Lee
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.66-66
    • /
    • 2004
  • Observability of two spacecraft system is considered with relative line-of-sight vector measurements between two spacecraft system for autonomous navigation using the linear observability analysis. First, the dynamical equations and measurement models are introduced, and the basic assumption of attitude knowledge for one of two spacecrafts is explained. Then, we introduce a pair of nominal orbits of two spacecraft system, and the observability analysis for the nominal orbits is presented with the available measurements (for the numerical observability analysis). (omitted)

  • PDF

New Guidance Filter Structure for Homing Missiles with Strapdown IIR Seeker

  • Kim, Tae-Hun;Kim, Jong-Han;Kim, Philsung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.757-766
    • /
    • 2017
  • For implementing the proportional navigation guidance law on passive homing missiles equipped with strapdown imaging infrared seekers, the line-of-sight angles and rates with respect to the inertial frame should be estimated by carefully handling the parasitic instability effect due to the seeker's latency. By introducing a new state vector representation along with the Pade approximation for compensating the time-delay of the seeker, this paper proposes a new guidance filter structure, stochastic dynamic models and measurement equations, in three-dimensional homing problem. Then, it derives the line-of-sight angle and rate estimator in general two-dimensional engagement by applying the extended Kalman filter to the proposed structure. The estimation performance and the characteristics of the proposed filter were evaluated via a series of numerical experiments.

Geometric analysis of Missile applied in Frenet-Serret formula & Missile guidance applied in Fuzzy Control (Frenet-Sorret formula를 적용한 미사일의 기하학적 분석과 퍼지제어를 이용한 미사일유도)

  • Park, Sung-Chul;Hwang, Eun-Ju;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.632-634
    • /
    • 2005
  • In this paper, The Frenet-Serret formula of classical geometric curve theory with the concept of a missile pointing velocity vector are used to analyze and design a missile guidance law. The capture capability of this guidance law is qualitatively studied by comparing the rotations of the velocity vectors of missile and target relative to the line of sight vector. when fuzzy Table look-up theory applied in target-missile distance & angle displacement, this research. It's performance is better then classical research.

  • PDF

Real-time Unbalance Moment Compensation Method for Line of Sight(LOS) Stabilization Control System (시선안정화 제어시스템의 실시간 불균형 모멘트 보상기법)

  • Jo, Sihun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • This paper describes real-time unbalance moment compensation method for line of sight(LOS) stabilization control systems. The factors of system inertia, frictions and unbalance moment affect the control accuracy of drive systems that are equipped to on the move(OTM) platforms requiring LOS stabilization function. In case of the unbalance moment among those factors is continuously changed as variation of relative angle between gravity vector and drive torque vector. Then, consideration of the effect in real-time is very complicate. Therefore, its effect should be designed to be minimized, however, designing it almost zero is impossible in real condition. In other words, it is hard to achieve target performance overcoming stability issue of highly unbalanced systems. To solve these problems, this paper proposes calculation method of unbalance moment by using measured sensor data for LOS stabilization control and its use for control compensation. Also, kinematical converting process and control structure for compensation are explained. The effectiveness of the proposed method as variation of unbalance moment is verified under simulation circumstance modeled by assuming LOS control system with 2-axis gimbal structure.

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Chulsoo;Bu, Sungchun;Jang, Jeagyu;Lee, Young Jae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.437-444
    • /
    • 2015
  • Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

Line-of-Sight (LOS) Vector Adjustment Model for Restitution of SPOT 4 Imagery (SPOT 4 영상의 기하보정을 위한 시선 벡터 조정 모델)

  • Jung, Hyung-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • In this paper, a new approach has been studied correcting the geometric distortion of SPOT 4 imagery. Two new equations were induced by the relationship between satellite and the Earth in the space. line-of-sight (LOS) vector adjustment model for SPOT 4 imagery was implemented in this study. This model is to adjust LOS vector under the assumption that the orbital information of satellite provided by receiving station is uncertain and this uncertainty makes a constant error over the image. This model is verified using SPOT 4 satellite image with high look angle and thirty five ground points, which include 10 GCPs(Ground Control Points) and 25 check points, measured by the GPS. In total thirty five points, the geometry of satellite image calculated by given satellite information(such as satellite position, velocity, attitude and look angles, etc) from SPOT 4 satellite image was distorted with a constant error. Through out the study, it was confirmed that the LOS vector adjustment model was able to be applied to SPOT4 satellite image. Using this model, RMSEs (Root Mean Square Errors) of twenty five check points taken by increasing the number of GCPs from two to ten were less than one pixel. As a result, LOS vector adjustment model could efficiently correct the geometry of SPOT4 images with only two GCPs. This method also is expected to get good results for the different satellite images that are similar to the geometry of SPOT images.