• Title/Summary/Keyword: Line inductor

Search Result 121, Processing Time 0.027 seconds

Experimental Investigation of Differential Line Inductor for RF Circuits with Differential Structure

  • Park, Chang-kun
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • A Differential line inductor is proposed for a differential power amplifier. The proposed differential line inductor is composed of two conventional line inductors rearranged to make the current direction of the two line inductors identical. The proposed line inductor is simulated with a 2.5-D and a 3-D EM simulator to verify its feasibility with the substrate information in a 0.18-${\mu}m$ RF CMOS process. The inductances of various line inductors implemented with printed circuit boards were measured. The feasibility of the proposed line inductor was successfully demonstrated.

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.

Fully CMOS-compatible Process Integration of Thin film Inductor with a Sputtered Bottom NiFe Core (스퍼터링 방법으로 증착된 하층 NiFe 코어를 갖는 박막인덕터의 CMOS 집적화 공정)

  • 박일용;김상기;구진근;노태문;이대우;김종대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2003
  • A double spiral thin-film inductor with a NiFe magnetic core is integrated with DC-DC converter IC. The NiFe core is deposited on a polyimide film as the thinckness of NiFe is 2.5~3.5 ${\mu}$m. Then, copper conductor line is deposited on the NiFe core with double spiral structure. Process integration is performed by sequential processes of etching the polyimide film deposited both top and bottom of the NiFe core and electroplation copper conductor line from exposed metal pad of the DC-DC converter IC. Process integration is simplified by elimination planarization process for top core because the proposed thin-film inductor has a bottom NiFe core only. Inductor of the fabricated monolithic DC-DC converter IC is 0.53 ${\mu}$H when the area of converter IC and thin-film inductor are 5X5$\textrm{mm}^2$ and 3.5X2.5$\textrm{mm}^2$, respectively. The efficiency is 72% when input voltage and output voltage are 3.5 V and 6 V, respectively at the operation frequency of 8 MHz.

Design of T/R Switch Using LTCC Technology

  • Sim, Sung-Hun;Kang, Chong-Yun;Park, Ji-Won;Yoon, Young-Joong;Kim, hyun-Jai;Park, Hyung-Wook;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, a novel design of multilayer ceramic-based Transmit/Receive (T/R) switch using Low Temperature Co-fired Ceramic (LTCC) technology have been presented. Compact T/R switch has been designed by transforming quarter-wave transmission line to its lumped equivalent circuit. Especially, high-Q three dimensional inductors with double strip have been proposed and incorporated. The proposed inductor has been modeled by multi-conductor coupled lines. A measured inductor quality factor (Q) of 80 and a Self-Resonance Frequency (SRF) of 6.6 GHz have been demonstrated. The inductor library has been incorporated into the design of WCDMA T/R switch.

Study on the Compositions of Photosensitive Ag Paste for Patterning Embedded Fine-Line Inductor in LTCC (LTCC 내장형 미세 라인 인덕터 구현을 위한 감광성 Ag Paste 조성에 관한 연구)

  • Lee, Sang-Myoung;Park, Seong-Dae;Yoo, Myong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.157-161
    • /
    • 2007
  • Line width under $100\;{\mu}m$ with good resolution is difficult to achieve using conventional thick-film process utilizing screen printing method. However combined with lithography technology finer line and space for miniaturization and highly integrated package is achievable. In this study, photosensitive Ag paste of optimum formulation used for thick film lithography technology was fabricated by various Ag powder, glass powder and additives. As the result, line width of $30\;{\mu}m$ with good definition and reduced mismatch during co-firing with LTCC substrate was acquired. Formulated Ag paste was used to pattern embedded fine line inductor with over 90% yield.

The Characteristic of Passive Elements on Aluminum Nitride Substrate (AIN 기판의 수동 소자 특성)

  • Kim, Seung-Yong;Yook, Jong-Min;Nam, Choong-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, the key parameters of $CO_2$ laser(focus depth, air blow rate, total laser beam time, number of pulse) are experimented for thru-hole and scribing line on AIN(aluminum nitride) substrate with high thermal conductivity. And, microstrip line & spiral planar inductor are fabricated on AIN substrate using 5 um Cu-plating with self-masking technique. The microstrip line of AIN has 0.1 dB/mm attenuation at 10 GHz and 6 nH spiral planar inductor has 56 maximum quality factor at 1 GHz. Thus, the AIN substrate is promising for GHz applications of high power area.

Study on Frequency Characteristics of Hexagonal Spiral Thin-film Inductor (육각 나선형 박막 인덕터의 주파수 특성에 관한 연구)

  • Kim, Jae-Wook;Kim, Hee-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.402-408
    • /
    • 2017
  • In this paper, we analyzed the frequency characteristics of hexagonal spiral thin-film inductor based on non-contact AC coupling for wireless signal transmission. We compared and analyzed the frequency characteristics of the rectangular spiral inductor and the hexagonal spiral inductor according to the number of turns, the line width and the line spacing of the conductor. Hexagonal spiral inductor has more number of turns to has the same inductance as rectangular spiral inductor, but the overall length of the conductors is shortened. This reduces the self inductance and increases the mutual inductance so that the overall inductance can have the same value. Also, since the overall length of the conductor is shortened and the magnetic resistance is reduced, the quality factor and the self-resonant frequency performance can be secured. The proposed hexagonal spiral thin-film inductor has the inductance of 3.54nH at 2GHz, the quality factor of max 14.00 at 5.0GHz and the self-resonant frequency at about 11.3GHz.

A Design of The Meander Line Inductor With Good Sensitivity Using Aperture Ground plate and Multi-layer PCB (개구 접지 면과 적층 PCB를 이용한 우수한 민감도를 갖는 미앤더 선로 인덕터 설계)

  • Kim, Yu-Seon;Nam, Hun;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we design the meander line inductors with high sensitivity and high quality factor(Q) using high characteristic impedance of aperture ground plate. Sensitivity as a frequency is new defined by variation of effective inductance per analysis frequency range instead of self resonance frequency (SRF). An equivalent lumped circuit is derived to explain the characteristic of high frequency inductor. The 4 nH meander line inductor with aperture ground plate has 0.45 nH/GHz of good sensitivity and 86 of Q at 0.7 GHz.

A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing

  • Kim, Donghwan;Jung, Kyosun;Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • This paper presents DG based droop controlled parallel inverter systems with virtual impedance considering the unequal resistive-inductive combined line impedance condition. This causes a reactive power sharing error and dynamic performance degradation. Each of these drawbacks can be solved by adding the feedforward term of each line impedance voltage drop or injecting the virtual inductor. However, if the line impedances are high enough because of the long distance between the DG and the PCC or if the capacity of the system is large so that the output current is very large, this leads to a high virtual inductor voltage drop which causes reductions of the output voltage and power. Therefore, the line impedance voltage drops and the virtual inductor and resistor voltage drop compensation methods have been considered to solve these problems. The proposed method has been verified in comparison with the conventional droop method through PSIM simulation and low-scale experimental results.