• Title/Summary/Keyword: Line friction

Search Result 243, Processing Time 0.026 seconds

Brake Squeal Noise Due to Disk Misalignment (디스크 정렬불량에 기인한 브레이크 스퀼소음)

  • Park, Ju-Pyo;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

Design of Neuro-Fuzzy Controllers for DC Motor Systems with Friction

  • Kim, Min-Jae;Jun oh Jang;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.70-70
    • /
    • 2000
  • Recently, a neuro-fuzzy approach, a combination of neural networks and fuzzy reasoning, has been playing an important role in the motor control. In this paper, a novel method of fiction compensation using neuro-fuzzy architecture has been shown to significantly improve the performance of a DC motor system with nonlinear friction characteristics. The structure of the controller is the neuro-fuzzy network with the TS(Takagi-Sugeno) model. A back-propagation neural network based on a gradient descent algorithm is employed, and all of its parameters can be on-line trained. The performance of the proposed controller is compared with both a conventional neuro-controller and a PI controller.

  • PDF

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Dynamic Viscoelasticity of Hot Pressed Wood (열압재목재(熱壓縡木材)의 동적점탄성(動的粘彈性))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.3-10
    • /
    • 1984
  • In hot pressed wood of Pseudotsuga menziesii compressed to 0 - 50 percent at temperature 60 - $180^{\circ}C$, relative humidity conditions affecting dynamic Young's modulus of elasticity and internal friction were investigated. The results obtained are summarized as follows: Moisture absorption of the hot pressed wood decreased with increasing press temperature, but there was no effect on the amount of compression. Thickness swelling dereased with increasing press temperature, and increased with increasing amount of compression. In general, dynamic Young's modulus of elasticity showed a straight line with increasing specific gravity of specimens. Dynamic Young's modulus of elasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content. Dynamic Young's modulus of R specimens pressed in the radial direction showed hight values than T specimens pressed in the tangential direction.

  • PDF

Kissing-Bond Characteristics in a Friction Stir Welded Aluminum Alloy by Transmission Electron Microscopy

  • Sato, Yutaka S.;Takauchi, Hideaki;Park, Seung-Hwan;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.384-386
    • /
    • 2005
  • Initial oxide layer on the butt surface fragments during friction stir welding (FSW) and then often remains as a faint zigzag-line pattern on the cross section. When remnant of the oxide layer often adversely affects the mechanical properties in the weld, it is called as 'kissing-bond'. The present study systematically examines effect of oxide array on bend property in the root of friction stir (FS) welded Al alloy 1050 by transmission electron microscopy (TEM), and then clarifies identity of the kissing-bond.

  • PDF

The Effects of Sliding Speed and Load on Tribological Behavior of Ceramics in Line-contact Sliding (선접촉시 세라믹의 마찰 및 마멸 특성에 미치는 속도와 하중의 영향)

  • 김영호;이영제
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.35-44
    • /
    • 1995
  • Within the practical ranges of speed and load, the formation of transfer films and the consequent effects on the friction and wear behavior of ceramic materials during repeated pass sliding contact were studied. These tests were done using $Al_{2}O_{3}$, SiC and $Si_{3}N_{4}$ with the cylinder-on-flat test configuration. The three pairings behaved differently, even if some wear mechanisms were common to the three systems. The $Al_{2}O_{3}$ pair showed the least wear in overall conditions, followed by the $Si_{3}N_{4}$ pair in harder sliding conditions. The wear of SiC was very high at severe loading. In case of $AL_{2}O_{3}$ and $Si_{3}N_{4}$, the transfer film, whenever formed, is strongly attached, enough to resist being wiped off by the slider. As a consequence, the formation of this f'fim leads to a decrease in the wear rate because of the protecting role of the film. The presence of the film at the contact interface also results in high friction. Also, the wear rate of each ceramics is related to the frictional power provided by load, speed and friction.

Effects of Initial AE Counts During Plastic Deformation in Friction \elding of Dissimilar Steel Tubes on the Weld Quality Control (이종강관 마찰용접의 소성변형 중 발생된 초기 AE양이 용접품질 제어에 미치는 영향에 관한 연구)

  • 오세규;김동조;정락기
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.69-75
    • /
    • 1983
  • Both in-process quality control and reliability of the weld is one of the major concerns is applying friction welding. No reliable nondestructive monitoring method is available at present to determine the weld quality particularly in process of production. So that, this paper presents an experimental examination and quantitative analysis for the effects of initial acoustic emission(AE) counts on the weld strength relating to the rotating speed as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was well confirmed that the initial AE counts occurring during plastic deformation period of welding were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds, tube-to-tube (SM 20 C to STS 304) and then an AE technique using the initial AE counts can be reliably applied to in-process strength monitoring of the weld.

  • PDF

Dynamic Characteristic Analysis of 3-Piece Freight Vehicle with Wedge Friction Damper Using ADAMS (ADAMS를 이용한 3-Piece 마찰 웨지 댐퍼가 장착된 화차의 동특성 해석)

  • Lee, Chul-Hyung;Han, Myung-Jae;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.299-310
    • /
    • 2017
  • In this work, an independent-load friction wedge model was developed using the ADAMS/View program to predict the performance of a freight vehicle with a bogie employing a 3-piece friction wedge. The friction wedge model can generate friction according to lateral and vertical directions of the bolster. The developed friction wedge model was applied to the ADAMS/Rail vehicle model, and results of the dynamic analysis showed a critical speed of 210km/h. In the linear safety analysis, it was confirmed that the lateral and vertical limit of acceleration of the vehicle were satisfied based on UIC518. In the 300R curve line, the application speed was 70km/h, which was satisfied with the limit acceleration of the car-body and bogie based on UIC518. Also, the developed model satisfied the wheel loading, lateral force and derailment coefficient of "The Regulations on Safety Standards for Railway Vehicles"

On-line Monitoring of Tribology Parameters and Fault Diagnosis for Disc Brake System

  • Yang Zhao-Jian;Kim Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.224-228
    • /
    • 2003
  • The basic Principles and methods of the on-line monitoring of tribology parameters (friction coefficient and wear allowance) and fault diagnosis for the hoist disc brake system were introduced, the method were based on the spring force and oil pressure of the brake system and the hoist kinematics parameters. The experiment on the monitoring and diagnosis of hoist brake system were carried out. The research results showed: the monitoring and diagnosis methods are feasible.

  • PDF

Friction and Wear of Ceramic-Steel Pairs in Boundary-Lubricated and Unlubricated Line-Contact Sliding (경계윤활 및 무윤활 상태에서 선접촉을 하는 세라믹과 강의 마찰과 마멸 특성)

  • 이영제;김영호;장선태
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.12-25
    • /
    • 1996
  • The friction and wear behaviors of ceramics against steels with lubricants were investigated and compared with those observed in air. Lubrications wbre done by a water and a commercial engine oil as received. The investigated ceramics were $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$. Steels with 0.2 wt.% C were heat treated to obtain tempered structure. A cylinder-on-plate tribometer with rotated sliding motion was used to carry out the experiments. In the experiments reported here, the ranges of different testing speeds and loads were used. It was found that the friction and wear characteristics of tested pairs were significantly influenced by environments. In water and oil environments the wear of ceramics was reduced from 10$^{-6}$ g/s down to 10$^{-8}$ g/s in dry sliding at the same values of the frictional power which are the products of the friction coefficient, the load and the sliding speed. SiC showed excellent wear resistant behavior in water sliding, which was the lowest among tested ceramics, but it was, very poor in oils. In case of $Si_{3}N_{4}$, the wear rates were very low under oil environment, but the highest in water. The wear rates of $Al_{2}O_{3}$ were very low in both lubricating conditions at low values of the frictional power, but high at high values of the frictional power.