• 제목/요약/키워드: Line Contingency Analysis

검색결과 46건 처리시간 0.018초

온라인 선로상정사고 분산처리를 위한 SIMD 구조의 PC 클러스터링 (The PC Clustering of the SIMD Structure for a Distributed Process of On-line Contingency)

  • 장세환;김진호;박준호
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1150-1156
    • /
    • 2008
  • This paper introduces the PC clustering of the SIMD structure for a distributed processing of on-line contingency to assess a static security of a power system. To execute on-line contingency analysis of a large-scale power system, we need to use high-speed execution device. Therefore, we constructed PC-cluster system using PC clustering method of the SIMD structure and applied to a power system, which relatively shows high quality on the high-speed execution and has a low price. SIMD(single instruction stream, multiple data stream) is a structure that processes are controlled by one signal. The PC cluster system is consisting of 8 PCs. Each PC employs the 2 GHz Pentium 4 CPU and is connected with the others through ethernet switch based fast ethernet. Also, we consider N-1 line contingency that have high potentiality of occurrence realistically. We propose the distributed process algorithm of the SIMD structure for reducing too much execution time on the on-line N-1 line contingency analysis in the large-scale power system. And we have verified a usefulness of the proposed algorithm and the constructed PC cluster system through IEEE 39 and 118 bus system.

Stability Index Based Voltage Collapse Prediction and Contingency Analysis

  • Subramani, C.;Dash, Subhransu Sekhar;Jagdeeshkumar, M.;Bhaskar, M. Arun
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.438-442
    • /
    • 2009
  • Voltage instability is a phenomenon that could occur in power systems due to stressed conditions. The result would be an occurrence of voltage collapse leading to total blackout of the system. Therefore, voltage collapse prediction is an important part of power system planning and operation, and can help ensure that voltage collapse due to voltage instability is avoided. Line outages in power systems may also cause voltage collapse, thereby implying the contingency in the system. Contingency problems caused by line outages have been identified as one of the main causes of voltage instability in power systems. This paper presents a new technique for contingency ranking based on voltage stability conditions in power systems. A new line stability index was formulated and used to identify the critical line outages and sensitive lines in the system. Line outage contingency ranking was performed on several loading conditions in order to identify the effect of an increase in loading to critical line outages. Correlation studies on the results obtained from contingency ranking and voltage stability analysis were also conducted, and it was found that line outages in weak lines would cause voltage instability conditions in a system. Subsequently, using the results from the contingency ranking, weak areas in the system can be identified. The proposed contingency ranking technique was tested on the IEEE reliability test system.

A Novel Line Stability Index for Voltage Stability Analysis and Contingency Ranking in Power System Using Fuzzy Based Load Flow

  • Kanimozhi, R.;Selvi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.694-703
    • /
    • 2013
  • In electric power system, the line stability indices adopted in most of the instances laid stress on variation of reactive power than real power variation of the transmission line. In this paper, a proposal is made with the formulation of a New Voltage Stability Index (NVSI) which originates from the equation of a two bus network, neglecting the resistance of transmission line, resulting in appreciable variations in both real and reactive loading. The efficacy of the index and fuzzy based load flow are validated with IEEE 30 bus and Tamil Nadu Electricity Board (TNEB) 69 bus system, a practical system in India. The results could prove that the identification of weak bus and critical line in both systems is effectively done. The weak area of the practical system and the contingency ranking with overloading either line or generator outages are found by conducting contingency analysis using NVSI.

단일 선로고장시 정적 안전도 향상을 위한 유연송전기기 운전 방안 (A Security-oriented Operation Scheme of FACTS Devices to Cope with A Single Line-faulted Contingency)

  • 임정욱
    • 조명전기설비학회논문지
    • /
    • 제18권3호
    • /
    • pp.149-155
    • /
    • 2004
  • 본 논문에서는 상정사고 해석을 통해 결정된 가장 심각한 단일 선로고장에 대하여 부하차단이나 재급전을 하지 않고, 유연송전기기의 운전만으로 안전도를 향상시켜 이를 극복할 수 있는 방법을 제시하였다. 즉, 직렬, 병렬, 직병렬보상기기 등 유연송전기기의 각 종류별로 정적 안전도 여유를 최대화하고 안전도 지수를 최소화하는 방법을 개발하였고, 이를 통하여 각 유연송전기기의 최적 운전점을 결정하는 방법을 개발하였다. 여기서, 정적 안전도 지수는 선로 조류 및 모선 전압에 관한 안전도를 정량화하여 식으로 나타낸 것이다. 안전도 지수가 작아지면 안전도 여유는 커지는데, 본 논문에서는 안전도 지수를 반복계산법으로 최소화하였다. 본 논문에서는 제안한 방법은 IEEE 57모션개통에 적용하여 제안된 방법의 정당성을 수치적으로 입증하였다.

Python 기반 WSCR 강건 지수를 이용한 미래계통 구축에 관한 연구 (A Study on Future System Construction Using WSCR Strengthness Index based on Python)

  • 박성준;허진;김현진;조윤성
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.994-1001
    • /
    • 2018
  • In this paper, to studied about future power system construction using PSS / E-Python API. Python-based future system automatical construction methods and modeling of renewable sources. it confirmed the stability of the powert system for each renewable area by calculating the weighted short circuit ratio (WSCR) index. it calculated the short circuit ratio (SCR) and selected the transmission line linkage scenario to improve the stability of vulnerable areas. it confirmed the WSCR index improvement through the selected transmission line linkage of scenario, and analyzed the stability of the renewable power system applying the scenario. It describes Facts and Shunt devices adjustment for the load flow convergence. It describes the stable methed of the bus voltage through the transformer Ratio Tap adjustment. By performing PSS/E ASCC using the Python it was performed three-phase short circuit fault capacity analysis, it is confirmed whether excess of the fault current circuit breaker capacity. In order to contingency accident analysis, it have described the generation of one or two line list of each areas using the Python. The list is used to contingency analysis and describe the soluted of the transmission line overload through comparison before and after adding the scenario line.

온라인 고속 상정사고 선택에 관한 연구 (A Study on the on-line fast Automatic Contingency Selection)

  • 송길영;김영한;노대석
    • 대한전기학회논문지
    • /
    • 제36권5호
    • /
    • pp.309-318
    • /
    • 1987
  • In the on-line security analysis of power system, Automatic Contingency Selection (ACS) is commonly used to reduce the number of contingency cases which will be evaluated in detail. This paper describes a fast and reliable ACS method which adopts DC load flow in conjunction with compensation theorem to improve execution time, and applies severity performance index, divided on each limit level for considering overload rate, to make reliable contingency ranking. The method has been tested in IEEE 25 bus system and KEPCO 130 bus actual power system. The results of these tests verify its superiority to both the execution time and reliability, and illustrate its effectiveness for the practical use.

  • PDF

실용적 접근 기반의 전력계통 해석 프로그램 상정고장, 해소방안 자동화 기법: 휴전검토 자동화 툴 개발 (A Study on Methodology for Automated Contingency and Remedial Action Analysis based on Practical Approach: Development of Automated Scheduled Outage Analysis Tool)

  • 송지영;고백경;신정훈;한상욱;남수철;이재걸;김태균
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1171-1179
    • /
    • 2014
  • ISO(Independent System Operator) or TSO(Transmission System Operator) use power system analysis program to simulate contingency analysis and remedial actions to operate power system stably. Generally, power system analysis program provides automated analysis functions(or modules) to deal with wide area power system. However, because of missed contingency cases, automated contingency analysis has no practical use or has limitation. And in case of remedial action, it doesn't support automated function or takes a lot of times to study, because of simulation in manual for each cases. This paper suggests that new relation with buses and transmission line properties of power system DB used for power system analysis program to simulate automated contingency including all contingency cases needed in the field without missed cases. And it proposes automated remedial action scheme based on practical approach analysis to alleviate overloading or voltage problems. Finally it deals with automated contingency/remedial action analysis(automated scheduled outage) program which is developed by KEPCO and its performance and proposed schemes are proven by case study for real Korean power system data.

모선주입전력 조정에 의한 과부하 해소 앨고리즘 (Overload Alleviation Algorithm by the Bus Injection Power Control)

  • 박규홍;정재길;안민옥
    • 대한전기학회논문지
    • /
    • 제39권2호
    • /
    • pp.111-118
    • /
    • 1990
  • This paper presents a new algorithm of contingency analysis and countermeasure to alleviate the line overloads for electric power systems. In this algorithm, the inverse matrix of the new Jacobian matrix when a contingency occurs, in fastly calculated using the house-holder's Inverse Matrix Modification Lamma (IMML) with the original factor table. The generation outputs are firstly adjusted to alleviate all line overloads occurred by the contingency without tripping loads. If the generation adjustment is not enough anymore to alleviate line overloads, then the control of bus injection power is recommended to quickly alleviate remaining overloads with minimum amount of load tripping and generation read-justing at the termination busbars of the overload lines. The proposed algorithm has been validated in tests on the 6 busbar test system.

  • PDF

전력계통의 미소신호안정도 상정사고 해석 (Contingency Analysis for Small Signal Stability of Power Systems)

  • 심관식;김용구;문채주
    • 조명전기설비학회논문지
    • /
    • 제17권3호
    • /
    • pp.127-137
    • /
    • 2003
  • 논문에서는 대규모 계통의 미소신호안전도 평가 및 해석을 위해 고유치 감도/perturbation 이론에 근거한 상정사고 지표를 제안하였으며 이를 실제 계통에 적용한 결과를 기술하였다. 선로정수와 제어기점수에 대한 미소신호 안정도 상정사고 지표를 제시하였고 이로부터 심각한 저주파진동 문제를 발생할 수 있는 파라메타들을 선택하였다. 또한 각 발전기의 발전량 증감에 대한 고유치 변화로부터 미소신호안정도 상정사고를 일으킬 수 있는 발전기들을 선택하였다. 이 논문에서는 모든 결과들을 2000년 KEPCO 실계통의 시간영역해석과 비교 검증하여 제안한 미소신호안정도 상정사고 해석법이 정확함을 확인하였다.

상정사고별 배전측 부하분담 능력 분석과 도체 규격 검토 (Analysis of the Load Transfer Capacity and Study of Conductor Sizes for Contingency Levels in Distribution Systems)

  • 조남훈;전영재;한용희;한병성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.363-370
    • /
    • 2003
  • This paper presents the analysis of the load transfer capacity and study of conductor size for variable contingencies in distribution systems. The operation capacity of feeders was changed to improve operation efficiency in KEPCO, considerations for contingencies are still based on the previous capacity. In order to cope with the changes such as operation capacity, it is necessary to study whether the present "contingency support criteria" is reasonable or not, also to confirm the whether the present criteria should be improved or not. We analyze the load transfer capacity and conductor size on a distribution system for contingency levels such as the substation-level, bank-level, feeder-level, and zone-level.one-level.