• Title/Summary/Keyword: Line Array Speaker

Search Result 4, Processing Time 0.017 seconds

A Study on Arrangement and Configuration of Acoustic Output Equipment according to Type of Church Broadcast Sources (교회 방송음원의 종류에 따른 음향출력 설비 구성 배치에 관한 연구)

  • Park, Eunjin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.80-85
    • /
    • 2016
  • In this paper, by comparatively analyzing horn type speaker and line array type speaker developed based on line sound source theory and point sound source theory, we research whether theory is adaptable or not in real. Academically, point sound source is attenuated as much as 6dB in accordance with double distance and line sound source is attenuated as much as 3dB in accordance with double distance. Line array speaker system developed based on line sound source is analyzed by theory of line sound source about occurring small sound pressure attenuation and it is propose of research that array composition of right speaker is selected in accordance with use purpose and environment. For this purpose, we analyze theory of point sound source and line sound source. we analyze parameter value by simulating designed horn type speaker and line array speaker based on theory.

A Design and Algorithm Implementation of Waveguide for 3way Line Array Speaker (3way 라인어레이 스피커를 위한 웨이브가이드 알고리즘 구현 및 설계)

  • Hwang, Jee Won;Kim, ByunKon;Cho, Juphil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Directivity control technology of sound system is a key technology for improving sound quality. Providing a line source rather than a point source in an acoustic system can reduce the effects of attenuation interference at long distances, thereby providing high quality sound. In particular, A line-array speaker system can be used to provide coherent, high-quality sound over long distances. However, high frequencies have shorter wavelengths, so the distance between the speakers of a line array system must be shorter, but there are physical limitations. In this paper, we designed a wave guide and installed it in the speaker's compression driver to solve this problem. We measured and tested various acoustic characteristics to verify the performance of the speaker. As a result, when the line array sound system is constructed using the developed speakers, it is possible to provide a line source in all areas including the treble range, thereby achieving the same effect as a single extended source and providing high quality sound up to far distances.

Personal monitor & TV audio system by using speaker array (스피커 어레이를 이용한 개인용 모니터와 TV 오디오 시스템)

  • Lee, Chan-Hui;Chang, Ji-Ho;Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.638-643
    • /
    • 2007
  • With development of high display quality of TV and Monitor, personal audio system is arising great interest. In this study, we applied a method to make a good bright zone around the user and dark zone to other region by maximizing the ratio of sound energy between the bright and dark zone. We have attempted to use a line speaker array system to localize the sound in our listening zone. It depends on the size of the zone and array parameters, for example, array size, speaker spacing, wave length of sound.

  • PDF

High Performance Piezoelectric Microspeakers and Thin Speaker Array System

  • Kim, Hye-Jin;Koo, Kun-Mo;Lee, Sung-Q;Park, Kang-Ho;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.680-687
    • /
    • 2009
  • This paper reports on an improved piezoelectric microspeaker with a high sound pressure level of 90 dB, a total harmonic distortion of less than 15%, and coherence higher than 0.9. The fabricated Pb(Zr,Ti)$O_3$ (PZT) microspeakers have a thickness of only 1 mm including the speaker frame and an active area of 18 mm${\times}$20 mm. To achieve higher sound pressure and lower distortion, the PZT piezoelectric microspeaker has a well-designed speaker frame and a piezoelectric diaphragm consisting of a tilted PZT membrane and silicone buffer layer. From the simulation and measurement results, we confirmed that the silicon buffer layer can lower the first resonant frequency, which enhances the microspeaker's sound pressure at a low frequency range and can also reduce useless distortion generated by the harmonics. The fabricated PZT piezoelectric microspeakers are implemented on a multichannel speaker array system for personal acoustical space generation. The output sound pressure at a 30 cm distance away from the center of the speaker line array is 15 dB higher than the sound pressure at the neighboring region 30 degrees from the vertical axis.