• Title/Summary/Keyword: Lindley's approximation

Search Result 6, Processing Time 0.022 seconds

Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data

  • Sharma, Vikas Kumar;Singh, Sanjay Kumar;Singh, Umesh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.193-209
    • /
    • 2017
  • The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

Estimation based on lower record values from exponentiated Pareto distribution

  • Yoon, Sanggyeong;Cho, Youngseuk;Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this paper, we aim to estimate two scale-parameters of exponentiated Pareto distribution (EPD) based on lower record values. Record values arise naturally in many real life applications involving data relating to weather, sport, economics and life testing studies. We calculate the Bayesian estimators for the two parameters of EPD based on lower record values. The Bayes estimators of two parameters for the EPD with lower record values under the squared error loss (SEL), linex loss (LL) and entropy loss (EL) functions are provided. Lindley's approximate method is used to compute these estimators. We compare the Bayesian estimators in the sense of the bias and root mean squared estimates (RMSE).

Bayesian and maximum likelihood estimation of entropy of the inverse Weibull distribution under generalized type I progressive hybrid censoring

  • Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.469-486
    • /
    • 2020
  • Entropy is an important term in statistical mechanics that was originally defined in the second law of thermodynamics. In this paper, we consider the maximum likelihood estimation (MLE), maximum product spacings estimation (MPSE) and Bayesian estimation of the entropy of an inverse Weibull distribution (InW) under a generalized type I progressive hybrid censoring scheme (GePH). The MLE and MPSE of the entropy cannot be obtained in closed form; therefore, we propose using the Newton-Raphson algorithm to solve it. Further, the Bayesian estimators for the entropy of InW based on squared error loss function (SqL), precautionary loss function (PrL), general entropy loss function (GeL) and linex loss function (LiL) are derived. In addition, we derive the Lindley's approximate method (LiA) of the Bayesian estimates. Monte Carlo simulations are conducted to compare the results among MLE, MPSE, and Bayesian estimators. A real data set based on the GePH is also analyzed for illustrative purposes.

A Review on the Analysis of Life Data Based on Bayesian Method: 2000~2016 (베이지안 기법에 기반한 수명자료 분석에 관한 문헌 연구: 2000~2016)

  • Won, Dong-Yeon;Lim, Jun Hyoung;Sim, Hyun Su;Sung, Si-il;Lim, Heonsang;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • Purpose: The purpose of this study is to arrange the life data analysis literatures based on the Bayesian method quantitatively and provide it as tables. Methods: The Bayesian method produces a more accurate estimates of other traditional methods in a small sample size, and it requires specific algorithm and prior information. Based on these three characteristics of the Bayesian method, the criteria for classifying the literature were taken into account. Results: In many studies, there are comparisons of estimation methods for the Bayesian method and maximum likelihood estimation (MLE), and sample size was greater than 10 and not more than 25. In probability distributions, a variety of distributions were found in addition to the distributions of Weibull commonly used in life data analysis, and MCMC and Lindley's Approximation were used evenly. Finally, Gamma, Uniform, Jeffrey and extension of Jeffrey distributions were evenly used as prior information. Conclusion: To verify the characteristics of the Bayesian method which are more superior to other methods in a smaller sample size, studies in less than 10 samples should be carried out. Also, comparative study is required by various distributions, thereby providing guidelines necessary.

An Analysis of Record Statistics based on an Exponentiated Gumbel Model

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.405-416
    • /
    • 2013
  • This paper develops a maximum profile likelihood estimator of unknown parameters of the exponentiated Gumbel distribution based on upper record values. We propose an approximate maximum profile likelihood estimator for a scale parameter. In addition, we derive Bayes estimators of unknown parameters of the exponentiated Gumbel distribution using Lindley's approximation under symmetric and asymmetric loss functions. We assess the validity of the proposed method by using real data and compare these estimators based on estimated risk through a Monte Carlo simulation.