• 제목/요약/키워드: Limiting load

검색결과 173건 처리시간 0.029초

Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I (Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I)

  • 이찬주;이상곤;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

단상유도전동기의 돌입전류저감을 위한 제어기 설계 (Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor)

  • 박수강;백형래;이상일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권5호
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구 (A Study of TRM and ATC Determination for Electricity Market Restructuring)

  • 이효상;최진규;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

Characteristics of the magnetic flux-offset type FCL by switching component

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.18-20
    • /
    • 2016
  • The study of superconducting fault current limiter (SFCL) is continuously being studied as a countermeasure for reducing fault-current in the power system. When the fault occurred in the power system, the fault-current was limited by the generated impedance of SFCLs. The operational characteristics of the flux-offset type SFCL according to turn ratios between the primary and the secondary winding of a reactor were compared in this study. We connected the secondary core to a superconductor and a SCR switch in series in the suggested structure. The fault current in the primary and the secondary winding of the reactor and the voltage of the superconductor on the secondary were measured and compared. The results showed that the fault current in the load line was the lowest and the voltage applied at both ends of the superconductor was also low when the secondary winding of the reactor had lower turn ratio than the primary. It was confirmed based on these results that the turn ratio of the secondary winding of the reactor must be designed to be lower than that of the primary winding to reduce the burden of the superconductor and to lower the fault current. Also, the suggested structure could increase the duration of the limited current by limiting the continuous current after the first half cycle from the fault with the fault current limiter.

전력용 사이리스터 MCT를 이용한 무접점 직류차단기 (Contactless DC Circuit Breakers Using MOS-controlled Thyristors)

  • 심동연;김천덕;노의철;김인동;김영학;장윤석
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.45-50
    • /
    • 2000
  • Circuit breakers have traditionally employed mechanical methods to interrupt excessive currents. According to power semiconductor technology advances in power electronic device, some mechanical breakers are replaced with solid state equivalents. Advantages of the contactors using semiconductor devices include faster fault interrupting, fault current limiting, no arc to contain or extinguish and intelligent power control, and high reliability. This paper describes the design of a static $100{\pm}10%V$ and 0 to 50A DC self-protected contactor with 85A "magnetic tripping" and 100A interruption current at $2.2A/{\mu}s$ short circuit of load condition using a new power device the HARRIS MCT (600V-75A). The self-protection circuit of this system is designed by the classical ZnO varistor for energy absorption and turn-off snubber circuit ("C" or "RCD") of the MCT.

  • PDF

초음파 진동 딥 드로잉 공정에서의 마찰감소효과 분석을 위한 유한요소해석 및 실험 (FEA and Experiment Investigation on the Friction Reduction for Ultrasonic Vibration Assisted Deep Drawing)

  • 김상우;손영길;이영선
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.413-418
    • /
    • 2014
  • The current study presents experimental and numerical results on the effect of ultrasonic vibrations on a cylindrical cup drawing of a cold rolled steel sheet(SPCC). An experimental apparatus, which can superimpose high frequency oscillations during deep drawing, was constructed by installing on the tooling ultrasonic vibration generators consisting of a piezoelectric transducer and a resonator. Conventional and vibration-assisted cylindrical deep drawing tests were conducted for various drawing ratios, and the limiting drawing ratios(LDR) for both methods were compared. To evaluate quantitatively the contribution from the ultrasonic vibrations to the reduction of friction between tools and material finite element analyses were conducted. Through a series of parametric analyses, the friction coefficients, which minimized the differences of punch load data between the experiments and simulations, were determined. The results show that the application of ultrasonic vibration effectively improves the LDR by reducing the friction between the tools and the material.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

ECC 알고리즘 기반 모바일 웹 서비스 시스템의 성능 향상 (Performance Enhancement of ECC Algorithm-based Mobile Web Service System)

  • 김용태;정윤수;박길철
    • 정보처리학회논문지D
    • /
    • 제15D권5호
    • /
    • pp.699-704
    • /
    • 2008
  • 인터넷의 대중화로 웹에 대한 의존도가 높아지고 사용자가 증가로 인하여 웹 서비스 성능과 커뮤니케이션의 보안 문제가 중요한 이슈가 되고 있다. 기존의 웹 서비스 기술은 동시 클라이언트 개수의 제한과 서버 처리량의 감소 그리고 평균 응답 시간을 증가시켜 웹 어플리케이션 서버의 성능을 감소시킨다. 그리고 커뮤니케이션 보안을 위한 메시지 암호화 작업과 초기 handshake 비용은 연결에 필요한 계산 시간을 증가시켜 전송 속도와 서버 성능을 감소시킨다. 따라서 본 논문에서는 보안 요구사항을 만족하고 동시에 웹 서비스를 위하여 서버의 과부하를 개선하고 웹 서버 아키텍처의 신뢰성과 안전성을 위하여 타원곡선 암호화(ECC) 알고리즘을 이용하여 암호화 처리를 수행하고, 향상된 성능과 지연처리에 필요한 기술을 제공하는 개선된 모바일 웹 서버를 제안한다.

배터리 가용성 극대화를 고려한 BESS의 AGC 주파수제어 추종운영방안 (Operating Method of BESS for Providing AGC Frequency Control Service Considering Its Availability Maximization)

  • 최우영;유가람;국경수
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1161-1168
    • /
    • 2016
  • Battery energy storage system(BESS) attract the attention of the power system operators with its fast response to a disturbance in spite of its limited energy capacity. This paper proposes the operating method of BESS for following the Automatic Generation Control(AGC) frequency control which is centrally distributed by a system operator. As BESS needs to just meet the control requirement from the system operator, it should be able to properly manage the state of charge(SOC) of BESS to be available to control signal. For doing these, the proposed method distributes the control requirement to available batteries in proportion to its SOC. In addition, unavailable batteries are controlled to recover the SOC to an appropriate range, and the recovering power is supplied by available batteries meeting the control requirement. Moreover, the proposed method manages the efficiency of power conversion system (PCS) by limiting the number of PCS to be assigned for the low control requirement. Finally, the case studies are carried out to verify the effectiveness of proposed strategy.

A Priority Index Method for Efficient Charging of PEVs in a Charging Station with Constrained Power Consumption

  • Kim, Seung Wan;Jin, Young Gyu;Song, Yong Hyun;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.820-828
    • /
    • 2016
  • The sizable electrical load of plug-in electric vehicles may cause a severe low-voltage problem in a distribution network. The voltage drop in a distribution network can be mitigated by limiting the power consumption of a charging station. Then, the charging station operator needs a method for appropriately distributing the restricted power to all plug-in electric vehicles. The existing approaches have practical limitation in terms of the availability of future information and the execution time. Therefore, this study suggests a heuristic method based on priority indexes for fairly distributing the constrained power to all plug-in electric vehicles. In the proposed method, PEVs are ranked using the priority index, which is determined in real time, such that a near-optimal solution can be obtained within a short computation time. Simulations demonstrate that the proposed method is effective in implementation, although its performance is slightly worse than that of the optimal case.