• 제목/요약/키워드: Limiting circuit

검색결과 252건 처리시간 0.025초

고장 유형별 고속 인터럽터의 동작 특성 (The Operational Characteristics of High-speed Interrupter by Fault Types)

  • 정인성;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.278-283
    • /
    • 2013
  • With the increasing power demands, size of the fault current in electrical grids is steadily increasing, and it exceeds the breaking capacity of circuit breakers. To effectively cope with these problems, a high-speed interrupter was suggested. The high-speed interrupter provides fault current with a bypass to a fault current limiter in case of accidents and consequently, fault current can be restricted. In this study, behavioral characteristics of high-speed interrupter were analyzed by accident types occurred in a distribution system. When accidents occurred, a and b contact of the high-speed interrupter were turned-off and then, turned-on. Accordingly, fault current flowed to the circuit connected to a current limiting element, and the fault current limiter restricted fault current to within a half-cycle. Nevertheless, the behavior of the high-speed interrupter was slowed down by a switching surge. As a result, fault current was confirmed to be restricted not to within the anticipated half-cycle, but to after a half-cycle. Moreover, the behavioral characteristics of the high-speed interrupter changed not only by accident types, but by behaviors of R, S, and T phases. This was due to the errors in stroke lengths of the high-speed interrupters, which resulted in a slight time discrepancy among three interrupters. In addition, the switching behaviors of the b and a contact were confirmed not to have coincided due to the switching surge; b contact behaved first and a contact followed. because of this, accuracy of stroke length and switching surges through the solenoid suction increases may be necessary to resolve.

초전도 한류기를 이용한 Bi-2223/Ag 선재의 퀜치 보호를 위한 기초 연구 (Preliminary study on the quench protection of Bi-22231 Ag tape using superconducting fault current limiter)

  • 두호익;임성우;현옥배;황시돌;조철용;박충렬;한영성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.243-244
    • /
    • 2006
  • As an preliminary study for the quench protection of high temperature superconducting (HTS) cable using superconducting fault current limiter (SFCL), experimental research was carried out. The test circuit was composed of Bi-2223/Ag HTS tape and a SFCL made of YBCO thin films. In the normal state, the applied current of 56 A, which was critical current of HTS tape, could be flown through the circuit without resistive loss. Increasing the currents, the quench development of both materials was investigated from the voltage signal acquired from the resistance of the quenched superconductor. Up to around 10 times of the critical current was applied to the HTS tape and the current limiting characteristics of SFCL were investigated. In addition, for the finding out the optimal operating condition of SFCL such as the numbers of elements, a shunt resistor was applied to the SFCL and quench characteristics were analyzed as well.

  • PDF

전력 계통 신뢰도 개선을 위한 대표적인 한류기 유형 및 적용 효과 분석 (Review of Typical Fault Current Limiter Types and Application Effect to Improve Power System Reliability)

  • 고윤석;이우철
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1133-1142
    • /
    • 2023
  • 전력 계통에서 전력 용량의 급격한 증가는 고장 용량이 차단기의 차단 용량을 초과하게 함으로써 계통의 신뢰도를 심각하게 저하시킬 수 있다. 한류기는 고장 용량을 차단 용량 레벨로 제한함으로써 신뢰도를 개선할 수 있는 실질적이고 효과적인 방법이다. 본 연구에서는 한류기의 전력계통 적용 시 적용 방법론을 개발하는 데에 도움이 될 수 있도록 먼저, 한류기의 유형별 구조와 동작원리를 분석하였으며 주요 장단점들을 비교하였다. 다음, 한류기의 전력 계통에 대한 적용 효과를 검증하기 위해 한류기가 도입된 전력계통을 모델링하였다. 끝으로, EMTP-RV를 이용하여 3상 단락 고장을 모의한 후, 한류기의 적용 전과 후의 전류를 비교를 통해 한류기에 의해 고장 전류 감소하는 것을 확인함으로써 적용 효과를 검증할 수 있었다.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

송전급 초전도한류기의 적용에 따른 선로보호용 비율전류차동계전기의 동작특성 및 보호협조 분석 (Analysis on the Operation Characteristics and Protection Coordination between the Current Ratio Differential Relay for Line Protection and the Trigger-type SFCL in the Power Transmission System)

  • 조용선;김진석;임성훈;김재철
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.925-930
    • /
    • 2013
  • The fault current of the power transmission system is greater than that of the power distribution system. Therefore, the introduction of superconducting fault current limiter (SFCL) is more needed to reduce the increased fault current. The trigger-type SFCL consists of the high-temperature superconducting element (HTSC), the current limiting reactor (CLR) and the circuit breaker (CB). The trigger-type SFCL can be used to supplement the disadvantages of the resistive-type SFCL. The operation characteristics of the current ratio differential relay which is usually applied to the protection device of the power transmission system are expected to be affected under fault conditions and the applicability of the trigger-type SFCL. In this paper, we analyzed the operating characteristics, by the fault conditions, between the current ratio differential relay for line protection and the trigger-type SFCL in the power transmission system through the PSCAD/EMTDC simulation.

중첩전압(직류+교류 60Hz)에서 산화아연 피뢰기 소자의 누설전류 특성 (The characteristic of leakage current in ZnO surge arrestor elements with mixed direct and 60Hz voltage)

  • 이복희;박건영;강성만;최휘성;오성균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.186-188
    • /
    • 2003
  • The ZnO surge arrester is the protective device for limiting surge voltages on equipment by diverting surge current and returning the device to its original status. The occurrence of overvoltage appears in any phase to AC power supply system and it appears in mixing AC and impulse voltages, moreover because HVDC power supply system uses converter in semiconductor, it makes mixed DC and high harmonics voltages. In this study, the various mixed AC and DC voltages was made for investigating the degradation effect of ZnO arrester according to mixed voltage. As a result, the increase of DC component to mixed voltages causes the increase of resistive component of total leakage current to ZnO block. In changing V-I curve for mixed voltages, the cross-over point acts a factor as making the proper capacitor size of an equivalent circuit for ZnO block.

  • PDF

Operational Characteristics of Flux-lock Type SFCL using Series Resonance

  • Lim, Sung-Hun;Han, Byoung-Sung;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2005
  • We analyzed the fault current limiting characteristics of a flux-lock type $high-T_c$ super­conducting fault current limiter (HTSC-FCL) using series resonance between capacitor for series resonance and magnetic field coil which was installed in coil 3. The capacitor for the series resonance in the flux-lock type HTSC-FCL was inserted in series with the magnetic field coil to apply enough magnetic field into HTSC element, which resulted in higher resistance of HTSC element. However, the impedance of the flux lock type HTSC-FCL has started to decrease since the current of coil 3 exceeded one of coil 2 after a fault accident. The decrease in the impedance of the FCL causes the line current to increase and, if continues, the capacitor for the series resonance to be destructed. To avoid this operation, the flux-lock type HTSC-FCL requires an additional device such as fault current interrupter or control circuit for magnetic field. From the experimental results, we investigated the parameter range where the operation as mentioned above for the designed flux-lock type HTSC-FCL using series resonance occurred.

15 kVA급 박막형 초전도 전류제한기의 한류특성 (Characteristics of 15 kVA Superconducting Fault Current Limiters Using Thin Films)

  • 최효상;현옥배;김혜림;황시돌
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.1058-1062
    • /
    • 2000
  • We investigated resistive superconducting fault current limites (SFCLs) fabricated using YBCO thin films on 2-inch diameter sapphire substrates. Nearly identical SFCL units were prepared and tested. The units were connected in series and parallel to increase the current and voltage ratings. A serial connection of the units showed significantly unbalanced power dissipation between the units. This imbalance was removed by introducing a shunt resistor to the firstly quenched unit. Parallel connection of the units increased the current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current 25 A$\_$peak/, was produced and successfully tested at a 220 V$\_$rms/circuit. From the resistance increase, we estimated that the film temperature increased to 200 K in 5 msec, and 300 K in 120 msec. Successive quenches revealed that this system is stable without degradation in the current limiting capability under such thermal shocks as quenches at 220 V$\_$rms/.

  • PDF

15 kVA급 저항형 초전도 한류기의 전류제한특성 (Characteristics of 15 kVA superconducting fault current limiter)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon;Lim, Hae-Ryong;Kim, In-Seon;Hyun, Ok-Bae
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.272-275
    • /
    • 2000
  • We investigated a resistive superconducting fault current limiter (SFCL) fabricated using YBCO thin films on 2-inch diameter sapphire substrates. Nearly identical SFCL units were prepared and tested. The units were connected in series and parallel to increase the current and voltage ratings. A serial connection of the units showed significantly unbalanced power dissipation between the units. This imbalance was removed by introducing a shunt resistor to the firstly quenched unit. Parallel connection of the units increased the current rating. An SFCL module of 4 units in parallel, each of which has minimum quench current 25 Ap, was produced and successfully tested at a 220 V circuit. From the resistance increase, we estimated that the film temperature increases to 200 K in 5 msec, and 300 K in 120 msec. Successive quenches revealed that this system is stable without degradation in the current limiting capability under such thermal shocks as quenches at 220 V.

  • PDF

저압계통의 단락전류 제한을 위한 PTC 소자 개발 (Development of PTC elements for limiting short circuit current in low voltage power systems)

  • 강종성;이방욱;오일성;권윤혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.18-20
    • /
    • 2005
  • 일반적으로 저압계통의 고장전류를 차단하기 위해 설치된 차단기의 차단원리는 주로 역전압발생법올 이용하고 있다. 역전압발생법은 효과적으로 저압계통의 고장전류를 차단할 수 있으나, 제한된 한류성능과 긴 아킹 시간은 차단기는 물론 주변 전력기기에 전기적/열적/기계적 스트레스를 주게 된다. 국내외 업체는 고장전류를 보다 빠르고 효과적으로 제한 및 차단을 할 수 있는 한류형 차단기를 제안하고 있는 실정이다. 저압계통의 경우, 정온도계수 (Positive Temperature Coefficient, PTC) 특성을 가지는 한류소자를 기존 차단기에 직렬 혹은 병렬로 연결하여 저압계통의 고장전류를 매우 빠르고 효과적으로 제한 및 차단하는 추세에 있으며, 또한 PTC 한류소자를 이용함으로써 저압계통의 차단보호협조를 효과적으로 구현하고자 하고 있다. PTC 한류소자는 소자는 열팽창이 큰 비전도성 성분과 열팽창이 작은 전도성 성분이 혼합되어 구성되며, 소자의 온도가 증가함에 따라 비전도성 성분이 상대적으로 큰 부피 팽창을 하여 저항이 증가하게 된다. 이러한 PTC 소자를 전력계통에 적용함으로써 고장전류에 따른 줄열에 의한 저항증가로 고장전류를 제한하게 된다. 본 연구에서는 일반적으로 배터리 보호용으로 사용되는 폴리에틸렌 수지 및 카본블랙으로 구성된 폴리머 PTC 한류소자를 이용하여, 기존의 저전력 배터리 보호 폴리머 PTC 소자로부터, 저압계통의 단락사고시 발생하는 단락전류를 효과적으로 제한할 수 있는 대전력 폴리머 PTC 소자를 개발하였다.

  • PDF