• Title/Summary/Keyword: Limit drawing ratio

Search Result 36, Processing Time 0.028 seconds

Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating (국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계)

  • Lee, Dong-Woo;Song, In-Seob;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

A Study on the Clad Sheet Metal of the Warm Drawability (SUS-Al-Mg이종판재의 드로잉성형에 관한 연구)

  • Lee, Y.S.;Jung, T.W.;Kwon, Y.N.;Lee, J.H.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.71-74
    • /
    • 2008
  • The clad sheet is the sheet metal that joined the one or more material with the different property by rolling process. In this study, it is investigated about the mechanical property or formability of SUS-Al-Mg clad sheet. The clad sheet was formed at elevated temperature because of their poor formability at room temperature. The tensile test was confirmed at various temperature and the reduction of strain rate above $250^{\circ}C$. LDR(Limited Drawing Ratio) was obtained through deep drawing test to confirm the formability of the clad sheet. The FE analysis is performed to compare prototype products.

  • PDF

Forming Limits Diagram of AZ31 Alloy Sheet with the Deformation Mode (AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.473-480
    • /
    • 2008
  • Sheet metal forming of Mg alloy is usually performed at elevated temperature because of the low formability at room temperature. Therefore, strain rates affected with the forming temperature and speed must be considered as important factor about formability. Effects of process parameters such as various temperatures and forming speeds were investigated in circular cup deep drawing. From the experimental results, it is known that LDR (Limit Drawing Ratio) increase as the strain rate increase. On the contrary, the FLD (Forming Limit Diagram) shows lower value as faster strain rate. Therefore, anisotropy values are investigated according to the temperature and strain rates at each forming temperature. R-values also represent higher value as faster strain rate. It is known that the formability can be different with the deformation mode on warm forming of AZ31 alloy sheet.

A Study on the Behavior of Wrinkles in Square Cup Drawing (사각용기 성형시 주름의 거동에 관한 연구)

  • Kim, Jin-Moo;Chung, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.616-620
    • /
    • 2001
  • The wrinkling in the flange and wall of a part is a predominent failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Although the wrinkles of flange have been made in the incipient stage of drawing, if the height of wrinkles is maintained under a prescribed limit by decrease or extinction of wrinkles in the course of drawing, small BHP can be allowed so that the depth of drawing could be increased. Authors research the variation of the wrinkles in flange in the course of square cup drawing by using aluminium A1015 and aluminium alloy A5052.

  • PDF

A study on the effect of die profile radius on formability in deep-drawing process with spring-type blankholder system (스프링형 블랭크홀더방식의 디프드로잉 가공에서 다이 윤곽반경이 성형성에 미치는 영향에 관한 연구)

  • 이종국;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.35-42
    • /
    • 1989
  • The major purpose of this paper is a study on the effect of die profile radius on the formability of spring-type blankholder system in deep drawing process. By drawing the various materials, formability is studied by means of checking the drawing force, blankholding force variation, limiting drawing ratio and wall wrinkling phenomenon. As the die profile radius increases, the maximum drawing force and maximum blankholding force decrease regardless of lubrication condition. Because better lubrication induces blankholding force to rise, spring type blankholder system is better to protect flange wrinkling phenomenon than constant pressure type. And wall wrinkling phenomenon was not detected in experimental die radius range, so the Miyakawa's upper wrinkling limit is understimated in case of material tested.

  • PDF

A Study of the FEM Method on the Clad Sheet Metal Formability (Clad Sheet(Mg-Al-SUS) 성형성에 관한 해석 기법의 연구)

  • Jung, T.W.;Lee, Y.S.;Kim, D.;Hoon, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.399-402
    • /
    • 2009
  • The Clad sheet is made roll-bonding process of the one or more material with the different property. Good formability is an essential property in order to deform a clad metal sheet to a part or component. In this study, the mechanical properties and formability of a Mg-Al-SUS clad sheet are investigated. The clad sheet was deformed at elevated temperatures because of its poor formability at room temperature. Tensile tests of the each material and clad sheet were performed at various temperatures and at various strain rates. The limited draw ration (LDR) was obtained using a deep drawing test to measure the formability of the clad sheet. A finite element (FE) analysis was performed to predict formability of the cup drawing product, one_layer model and three_layer model.

  • PDF

A Study on the Deep drawing drawability and Analyzing process of AZ31B Magnesium Sheet at Warm and Hot temperature (AZ31B 마그네슘 판재의 온,열간 딮드로잉 성형성 및 공정해석)

  • Han, S.H.;Choo, D.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.48-52
    • /
    • 2006
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350 and $400^{\circ}C$), and forming speed (20, 50, 100 mm/min), thickness (0.5, 0.8, 1.0, 1.4 mm). The deep drawing process of circular cup and square cup were used in forming experiments. Experimental and FEM analysis are performed to investigate drawability and affection of controlled blank holding force. Through the controlled blank holding force, drawability was improved. This result is verified by FEM analysis. Through the observation of microstructure, the main cause is investigated as a quantity of the dynamic recrystallization.

  • PDF

Formability of Sheet Metals (금속판재의 성형성)

  • 이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.11-23
    • /
    • 1994
  • Formability of sheet metals can be evaluated using tensile testing. Easily measured tensile properties such as yield strength, tensile strength, elongation, strain hardening exponent, strain rate sensitivity and plastic strain ratio are important parameters to evaluated the sheet formability. This paper briefly explains how these properties are related to deep drawability and stretchability. The plastic anisotropy of sheet metals is usually attributed to the crystallographic texture. However dislocation distribution may influence the anisotropy.

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.