• Title/Summary/Keyword: Limit current density

Search Result 88, Processing Time 0.024 seconds

Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

  • Jin, Hongwoo;Lee, Jiho;Lee, Woo Seung;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.41-44
    • /
    • 2015
  • Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous $I_c$ distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous $I_c$ distribution along the length. If the $I_c$ distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, $I_c$ distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, $I_c$ distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

Electrochemical Simulation for Limited-Discharge Current Prediction of Li-ion Secondary Cell Using High-Rate Discharge (고율 방전용 리튬 전지의 한계 방전 전류 예측을 위한 전기화학 시뮬레이션)

  • Kim, Simon;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.807-812
    • /
    • 2015
  • Li-ion batteries are energy sources that are widely used in applications such as notebooks, cellular phones, power tools, and vehicles. They are devices in which stored chemical energy is changed to electrical energy by electrochemical reactions. They have a high energy density, small size, and are lightweight. In particular, power tools and vehicles require high charge/discharge rates. Therefore, in this paper, we perform electrochemical simulations using a commercial finite-element analysis program to determine the high discharge-rate characteristics of Li-ion cells. In addition, by performing high discharge-rate simulations, we found that the limited discharge current was 63 A. Based on the results obtained, we investigate the behavior of Li-ion cells with a high rate of discharge.

Review and Strategy for Study on Korean Buffer Characteristics Under the Elevated Temperature Conditions: Mineral Transformation and Radionuclide Retardation Perspective

  • Park, Tae-Jin;Yoon, Seok;Lee, Changsoo;Cho, Dong Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.459-467
    • /
    • 2021
  • In the majority of countries, the upper limit of buffer temperature in a repository is set to below 100℃ due to the possible illitization. This smectite-to-illite transformation is expected to be detrimental to the swelling functions of the buffer. However, if the upper limit is increased while preventing illitization, the disposal density and cost-effectiveness for the repository will dramatically increase. Thus, understanding the characteristics and creating a database related to the buffer under the elevated temperature conditions is crucial. In this study, a strategy to investigate the bentonite found in Korea under the elevated temperatures from a mineral transformation and radionuclides retardation perspective was proposed. Certain long-term hydrothermal reactions generated the bentonite samples that were utilized for the investigation of their mineral transformation and radionuclide retardation characteristics. The bentonite samples are expected to be studied using in-situ synchrotron-based X-Ray Diffraction (XRD) technique to determine the smectite-to-illite transformation. Simultaneously, the 'high-temperature and high-pressure mineral alteration measurement system' based on the Diamond Anvil Cell (DAC) will control and provide the elevated temperature and pressure conditions during the measurements. The kinetic models, including the Huang and Cuadros model, are expected to predict the time and manner in which the illitization will become detrimental to the performance and safety of the repository. The sorption reactions planned for the bentonite samples to evaluate the effects on retardation will provide the information required to expand the current knowledge of repository optimization.

Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy (Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향)

  • Kim, Nam-Gil;Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

Design and Analysis of Surface-Mounted PM Motor of Compressor for Electric Vehicles Applications according to Slot/Pole Combinations (전기자동차 압축기용 표면부착형 영구자석 전동기의 극/슬롯수 조합에 따른 특성해석 및 설계)

  • Choi, Jang-Young;Park, Hyung-Il;Jang, Seok-Myeong;Lee, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1846-1857
    • /
    • 2011
  • This paper deals with design and analysis of surface-mounted PM (SPM) motor for compressor of air-conditioning system for electric vehicle applications according to slot/pole combination. First, required torque-speed curve characteristics are determined from operating conditions of the compressor. Restricted conditions such as motor size limit and current density are also determined. And then, under same rated and restricted conditions, twelve models which have different slot/pole combinations each other are designed for various pole arc/pitch ratio using simple equations and 2-d finite element (FE) analyses. Designed models are analyzed and compared in terms of back-emf THD, cogging torque, torque ripple, power losses, efficiency, etc. On the basis of analysis results, it is found that the motor with a 6-pole PM rotor and a 27-slot stator has most outstanding performances in electromagnetic aspects. Finally, through the mechanical modal analysis and demagnetization analysis, it is concluded that the determined motor is most suitable for the compressor of air-conditioning system for electric vehicles.

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures

  • Sung, Woo-Yong;Kim, Wal-Jun;Lee, Seung-Min;Lee, Ho-Young;Kim, Yong-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1459-1461
    • /
    • 2005
  • Carbon nanotube -copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field of the structures was about 3.0 $V/{\mu}m$ at the current density of 0.1 ${\mu}A/cm^2$. We observed relatively uniform emission characteristics as well as stable emission currents. CNT-Cu composite plating method is efficient and it has no intrinsic limit on the plating area. Moreover, it gives strong adhesion between emitters and an electrode. The refore, we expect that CNT-Cu composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.

  • PDF

Fabrication of 3-dimensional magnetic sensor by anisotropic etching in TMAH (TMAH에 의한 이방성 식각을 이용한 3차원 자기센서의 제작)

  • Jung, Woo-Chul;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.308-313
    • /
    • 1999
  • This paper will present an anisotropic etching in TMAH technique used in the fabrication of three-dimensional magnetic field vector sensor based on angled Hall plate structure. This sensor design relies on simultaneously detecting all magnetic field vector components using Hall plates that are imbedded into the silicon [111] sloped-surface of bulk micromachined cavity by the anisotropic etching of [100] silicon. The fabricated Hall elements has relatively improved sensitivity compare to convensional Hall elements for three-dimensional magnetic field sensing. The product sensitivity of 547V/AT at the supply current of 1.0mA was achived. The corresponding limit in the detection of magnrtic field is 0.07G that calculated by measured power spectral density(PSD) in magnetic sensor output.

  • PDF

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.

Concept Development of a Simplified FPGA based CPCS for Optimizing the Operating Margin for I-SMRs

  • Randiki, Francis;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • The Core Protection Calculator System (CPCS) is vital for plant safety as it ensures the required Specified Acceptance Fuel Design Limit (SAFDL) are not exceeded. The CPCS generates trip signals when Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) exceeds their predetermined setpoints. These setpoints are established based on the operating margin from the analysis that produces the SAFDL values. The goal of this research is to create a simplified CPCS that optimizes operating margin for I-SMRs. Because the I-SMR is compact in design, instrumentation placement is a challenge, as it is with Ex-core detectors and RCP instrumentation. The proposed CPCS addresses the issue of power flux measurement with In-Core Instrumentation (ICI), while flow measurement is handled with differential pressure transmitters between Steam Generators (SG). Simplification of CPCS is based on a Look-Up-Table (LUT) for determining the CEA groups' position. However, simplification brings approximations that result in a loss of operational margin, which necessitates compensation. Appropriate compensation is performed based on the result of analysis. FPGAs (Field Programmable Gate Arrays) are presented as a way to compensate for the inadequacies of current systems by providing faster execution speeds and a lower Common Cause Failure rate (CCF).