• Title/Summary/Keyword: Limit current density

Search Result 88, Processing Time 0.03 seconds

CONSTRAINTS ON PRE-INFLATION COSMOLOGY AND DARK FLOW

  • MATHEWS, GRANT J.;LAN, N.Q.;KAJINO, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.309-313
    • /
    • 2015
  • If the present universe is slightly open then pre-inflation curvature would appear as a cosmic dark-flow component of the CMB dipole moment. We summarize current cosmological constraints on this cosmic dark flow and analyze the possible constraints on parameters characterizing the pre-inflating universe in an inflation model with a present-day very slightly open ${\Lambda}CDM$ cosmology. We employ an analytic model to show that for a broad class of inflation-generating effective potentials, the simple requirement that the observed dipole moment represents the pre-inflation curvature as it enters the horizon allows one to set upper and lower limits on the magnitude and wavelength scale of pre-inflation fluctuations in the inflaton field and the curvature parameter of the pre-inflation universe, as a function of the fraction of the total initial energy density in the inflaton field. We estimate that if the current CMB dipole is a universal dark flow (or if it is near the upper limit set by the Planck Collaboration) then the present constraints on ${\Lambda}CDM$ cosmological parameters imply rather small curvature ${\Omega}_k{\sim}0.1$ for the pre-inflating universe for a broad range of the fraction of the total energy in the inflaton field at the onset of inflation. Such small pre-inflation curvature might be indicative of open-inflation models in which there are two epochs of inflation.

Altered Delayed Rectifier $K^+$ Current of Rabbit Coronary Arterial Myocytes in Isoproterenol-Induced Hypertrophy

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.33-40
    • /
    • 2001
  • The aim of present study was to define the cellular mechanisms underlying changes in delayed rectifier $K^+\;(K_{DR})$ channel function in isoproterenol-induced hypertrophy. It has been proposed that $K_{DR}$ channels play a role in regulation of vascular tone by limiting membrane depolarization in arterial smooth muscle cells. The alterations of the properties of coronary $K_{DR}$ channels have not been studied as a possible mechanism for impaired coronary reserve in cardiac hypertrophy. The present study was carried out to compare the properties of coronary $K_{DR}$ channels in normal and hypertrophied hearts. These channels were measured from rabbit coronary smooth muscle cells using a patch clamp technique. The main findings of the study are as follows: (1) the $K_{DR}$ current density was decreased without changes of the channel kinetics in isoproterenol-induced hypertrophy; (2) the sensitivity of coronary $K_{DR}$ channels to 4-AP was increased in isoproterenol-induced hypertrophy. From the above results, we suggest for the first time that the alteration of $K_{DR}$ channels may limit vasodilating responses to several stimuli and may be involved in impaired coronary reserve in isoproterenol-induced hypertrophy.

  • PDF

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

Fabrication and characterization of NbTi-Au-NbTi Josephson junctions

  • Pyeong Kang, Kim;Heechan, Bang;Bongkeon, Kim;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.6-10
    • /
    • 2022
  • We report on the fabrication and measurements of metallic Josephson junctions (JJs) consisting of Au nanoribbon and NbTi superconducting electrodes. The maximum supercurrent density in the junction reaches up to ~ 3×105 A/cm2 at 2.5 K, much larger than that of JJ using single-crystalline Au nanowire. Temperature dependence of the critical current exhibits an exponential decay behavior with increasing temperature, which is consistent with a long and diffusive junction limit. Under the application of a magnetic field, monotonous decrease of the critical current was observed due to a narrow width of the Au nanoribbon. Our observatons suggest that NbTi/Au/NbTi JJ would be a useful platform to develop an integrated superconducing quantum circuit combined with the superconducting coplanar waveguide and ferromagnetic π junctions.

The upper critical field (($H_{c2}$) study of intermetallic $YNi_{2}$$B_{2}$C superconductor (중간금속성 $YNi_{2}$$B_{2}$C 초전도체의 상부임계자기장($H_{c2}$) 연구)

  • Song, K.J.;Lee, N.J.;Ko, R.K.;Park, C;Ha, H.S.;Ha, D.W.;Oh, S.S.;Kwon, Y.K
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.168-170
    • /
    • 2002
  • Magnetization studies were conducted on a single crystal of $YNi_{2}$$B_{2}$C superconductor. The 17 mg crystal was studied at temperatures T from above $T_{c}$ (15.5 K) to 3 K, in the magnetic fields H // c-axis up to 6 tesla. The crystal exhibited little magnetic irreversibility, with a critical current density $CO_{3}$ ~ $10^{-4}$ $\times$ $CO_{3}$, the depairing current density. Near $T_{c}$, the equilibrium magnetization M was London-like with M $\infty$ In(H). The upper critical field $H_{c2}$ of the single crystal $YNi_{2}$$B_{2}$C was estimated by the several alternative approaches such as standard London limit, Ginzburg-Landau, and Abrikosov relations. The estimated $H_{c2}$values agree relatively well with each other approaches.

  • PDF

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries (수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성)

  • So Hyeon Park;Su Hwan Jeong;Suyoon Eom;Sang Jun Lee;Joo-Hyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.545-552
    • /
    • 2022
  • Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.

Development of active discharge tester for high capacity lithium-ion battery (대용량 리튬 이온 배터리용 Active 방전시험기의 개발)

  • Park, Joon-Hyung;Yunana, Gani Dogara;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

Treatment of Pickling Wastewater from Electroless Nickel Plating by Soluble Electrode and Insoluble Electrode (용성 및 불용성전극을 이용한 무전해 니켈 도금 산세 폐액 처리)

  • Kim, Young-Shin;Jeon, Byeong-Han;Koo, Tai-Wan;Kim, Young-Hun;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In order to treat electrolysis nickel plating pickling wastewater to meet the effluent limit less than 3.0 mg/L, the electrolysis process by using soluble and insoluble electrode were studied. Electrolysis using soluble electrodes has a characteristic of easy elution from the electrode which the insoluble electrodes close not release metal from the electrode. For these reasons, there exist different characteristics in nickel removal efficiency, purity of nickel sludge. With this connection, the feasibility test were concluded to develop optimal conditions for the treatment of pickling wastewater electrolysis by using soluble electrodes, insoluble electrodes. Optimal condition of current density, pH were derived from the pickling wastewater using insoluble electrodes. It was concluded the highest removal efficiency of nickel at the operation condition of at pH 9, current density of $15mA/cm^2$. At these conditions, 95.3% purity of nickel sludge was achieved, iron content was 2.9%. Optimal condition when using soluble electrodes was derived current density of $10mA/cm^2$, pH 9. Purity of nickel sludge was 77.3%, iron content was 21.0%. 50.7% and 24.2% of operating cost can be saved by the use of soluble electrodes and the use of insoluble electrodes, respectively.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.