• Title/Summary/Keyword: Limit State Function

Search Result 218, Processing Time 0.02 seconds

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.

Moment redistribution of RC continuous beams: Re-examination of code provisions

  • Da Luo;Zhongwen Zhang;Bing Li
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.679-691
    • /
    • 2023
  • Many codes allow designers to use the bending moment diagram computed by elastic analysis and modify it by a certain amount of moment redistribution (MR) to account for plastic behaviour of continuous beams. However, several researchers indicated that the MR at the ultimate limit state (𝛽u) for some beams deviate significantly from the specified values of various codes. This paper examines the applicability of the provisions on 𝛽u in ACI 318-19 and Eurocode 2 through numerical investigations and comprehensively explores the influencing factors. The results show that some parameters not considered in those codes influence 𝛽u to a certain extent, where the ratio of tensile reinforcement ratio at intermediate support to tensile reinforcement ratio at midspan (𝜌s1/𝜌s2) and load type are crucial parameters to consider. The specific combination of these two parameters may make the codes overestimate or significantly underestimate the 𝛽u. On the other hand, the yield state of both critical sections is found to have an important influence on the influence degree of each parameter on 𝛽u. The yield conditions are investigated, and an empirical judgment equation is proposed. In addition, the influence laws of the critical parameters on 𝛽u have been further proved by theoretical derivation. Finally, due to 𝜀t is found to have a better linear correlation with 𝛽u than xu/d, equations as a function of 𝜀t for predicting the 𝛽u of continuous beams under the two loads are proposed, respectively.

An Alternative Perspective to Resolve Modelling Uncertainty in Reliability Analysis for D/t Limitation Models of CFST (CFST의 D/t 제한모델들에 대한 신뢰성해석에서 모델링불확실성을 해결하는 선택적 방법)

  • Han, Taek Hee;Kim, Jung Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.409-415
    • /
    • 2015
  • For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Terrain-referenced Underwater Navigation using Rao-Blackwellized Particle Filter (라오-블랙웰라이즈드 입자필터를 이용한 지형참조 수중항법)

  • Kim, Taeyun;Kim, Jinwhan;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.682-687
    • /
    • 2013
  • Navigation is a crucial capability for all types of manned or unmanned vehicles. However, vehicle navigation in underwater environments still remains a challenging problem since GPS signals for position fixes are not available in the water. Terrain-referenced underwater navigation is an alternative navigation technique that utilizes geometric information of the subsea terrain to correct drift errors due to dead-reckoning or inertial navigation. Terrain-referenced navigation requires the description of an undulating terrain surface as a mathematical function or table, which often leads to a highly nonlinear estimation problem. Recently, PFs (Particle Filters), which do not require any restrictive assumptions about the system dynamics and uncertainty distributions, have been widely used for nonlinear filtering applications. However, PF has considerable computational requirements which used to limit its applicability to problems of relatively low state dimensions. This study proposes the use of a Rao-Blackwellized particle filter that is computationally more efficient than the standard PF for terrain-referenced underwater navigation involving a moderate number of states, and its performance is compared with that of the extended Kalman filter algorithm. The validity and feasibility of the proposed algorithm is demonstrated through numerical simulations.

The Reliability Estimation of Pipeline Using FORM, SORM and Monte Carlo Simulation with FAD

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2124-2135
    • /
    • 2006
  • In this paper, the reliability estimation of pipelines is performed by employing the probabilistic method, which accounts for the uncertainties in the load and resistance parameters of the limit state function. The FORM (first order reliability method) and the SORM (second order reliability method) are carried out to estimate the failure probability of pipeline utilizing the FAD (failure assessment diagram). And the reliability of pipeline is assessed by using this failure probability and analyzed in accordance with a target safety level. Furthermore, the MCS (Monte Carlo Simulation) is used to verify the results of the FORM and the SORM. It is noted that the failure probability increases with the increase of dent depth, gouge depth, operating pressure, outside radius, and the decrease of wall thickness. It is found that the FORM utilizing the FAD is a useful and is an efficient method to estimate the failure probability in the reliability assessment of a pipeline. Furthermore, the pipeline safety assessment technique with the deterministic procedure utilizing the FAD only is turned out more conservative than those obtained by using the probability theory together with the FAD. The probabilistic method such as the FORM, the SORM and the MCS can be used by most plant designers regarding the operating condition and design parameters.

Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells (약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작)

  • Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.

The Effects of Task Oriented Circuit Exercise on Balance and Cognition in Mild Dementia Patients (순환식 과제 지향 운동이 경증치매환자의 균형능력과 인지기능에 미치는 영향)

  • Jung, Eun-Ji;Kim, Won-Bok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • PURPOSE: The purpose of this study was to investigate the effects of task oriented circuit exercise(TOCE) on the balance and cognition in mild dementia patients. METHODS: The subjects of the study were 30 patients with mild dementia and assigned to the TOCE(task oriented circuit exercise) group(n=15) and aerobic exercise(AE) group(n=15). TOCE group performed six task three times weekly for 12 weeks. AE group underwent the cycle ergometer and treadmill exercise three times a week during the experimental period respectively. Timed up and go test(TUG), Berg balance scale(BBS) and AP1153 Biorescue were used to assess the parameters for the balance. Korean-mini mental state examination and Global deterioration scale(GDS) were used to assess the parameters for the cognition. For the statistical analysis, paired t-test and independent t-test were used to compare the differences among two groups. RESULTS: Each group showed improvement in balance and possibility for improving cognitive function. TOCE group especially, there were significant improvements in limit of stability. CONCLUSION: The results of the study suggest that TOCE is a more diverse exercise programs introduced in the study. Furthermore, TOCE can be a helpful to improve the balance and cognition in mild dementia patients.

Development of optimum design curves for reinforced concrete beams based on the INBR9

  • Habibi, Alireza;Ghawami, Fouad;Shahidzadeh, Mohammad S.
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.983-998
    • /
    • 2016
  • Structural optimization is one of the most important topics in structural engineering and has a wide range of applicability. Therefore, the main objective of the present study is to apply the Lagrange Multiplier Method (LMM) for minimum cost design of singly and doubly reinforced rectangular concrete beams. Concrete and steel material costs are used as objective cost function to be minimized in this study, and ultimate flexural strength of the beam is considered to be as the main constraint. The ultimate limit state method with partial material strength factors and equivalent concrete stress block is used to derive general relations for flexural strength of RC beam and empirical coefficients are taken from topic 9 of the Iranian National Building Regulation (INBR9). Optimum designs are obtained by using the LMM and are presented in closed form solutions. Graphical representation of solutions are presented and it is shown that proposed design curves can be used for minimum cost design of the beams without prior knowledge of optimization and without the need for iterative trials. The applicability of the proposed relations and curves are demonstrated through two real life examples of SRB and DRB design situations and it is shown that the minimum cost design is actually reached using proposed method.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.