• Title/Summary/Keyword: Lime treatment

Search Result 272, Processing Time 0.027 seconds

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Assessment of Hot Water Treatment and Lime Sulfur Mixture on Germination and Disinfection Efficacy of Organic Wheat Seeds (온탕침지법과 석회유황합제 처리가 유기농 밀 종자의 발아와 소독효과 미치는 영향 평가)

  • Min-Jeong Kim;One-Sung Park;Chang-Ki Shim;Jae-Hyeong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.371-382
    • /
    • 2023
  • This study aimed to estimate optimal treatment for enhancing the germination rate and disinfections effect of organic wheat varieties, Jokyung, Geumgang, Saegumgang, and Baekgang using hot water treatment and lime sulfur mixture. Before disinfection, the germination rates of the seeds averaged 86.3±2.5% to 87.5±2.9%, while the infection levels caused by fungi and bacteria were observed to be 22.5±2.9% to 38.3±2.5% and 18.8±4.8% to 23.8±2.5%, respectively. The germination rates of four wheat varieties under hot water treatments were either the same or higher compared to untreated seeds. As the temperature and treatment time of hot water treatment increased, the contamination levels of fungi and bacteria decreased. The optimal hot water treatment for the seeds was observed at 55℃ for 10 minutes, resulting in germination rates averaging 90.0±0.0% to 97.5±2.9%, which were either the same or higher than untreated seeds. The disinfection effectiveness against fungi and bacteria was high, averaging 83.3~93.5% and 100%, respectively. Additionally, an investigation was conducted on the germination rates and microbial disinfection efficacy of 0.2% and 0.4% lime-sulfur mixture with varying treatment times, 3 to10 minutes for each wheat variety. As the treatment time elapsed, no significant differences in germination rates were observed among four wheat varieties. However, the germination rates were higher compared to the untreated group (86.3~87.5%), and the optimal treatment time was found to be 7 minutes or 10 minutes, resulting in an average reduction of 90.0~96.0% in contamination levels of fungi and bacteria. Therefore, the germination rates and disinfection effects varied depending on the treatment conditions of hot water treatment and lime-sulfur mixture applied for the disinfection of the four varieties of organic wheat seeds. However, it is considered that treating the seeds with hot water treatment at 55℃ for 10 minutes or with 0.2% or 0.4% lime-sulfur compound for 10 minutes enhances germination rates and reduces the contamination rate of fungi and bacteria compared to untreated seeds. Thus, these environmentally friendly seed disinfection technologies are likely to be highly useful in agricultural fields.

Growth and Mineral Composition of Young Radish in Soils Amended with Sewage Sludge and Lime (하수오니 및 석회시용이 열무의 생육과 화학성분에 미치는 영향)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Growth and mineral composition of young radish in soil amended with sewage sludge (ISS) with or without liming were investigated. Levels of EC, T-N, and micronutrients were increased in the ISS treatment (50 Mg/ha) compared to the NPK treatment but those of available P and exchangeable cations were decreased. Chlorosis was appear on the young radish leaf at the ISS treatment, but this phytotoxic symptom was corrected with lime amendment (3 Mg/ha). Yields of young radish leaf and root in the combined treatment of ISS and lime were increased about 29 and 48%, respectively, compared with those in the ISS treatment. Contents of P, K, Ca, and Mg in young radish were higher in the combined treatment to ISS and lime, whereas those contents in the ISS treatment were lower than those in the NPK treatment. Contents of Cu, Zn, and Ni in soil and young radish leaf were positively correlated with total N content in young radish leaf, while contents of P, K, Ca, and Mg were negatively correlated. Contents of Cu, Zn, and Ni in leaf were negatively correlated with yield of young radish. Contents of Cu and Zn in leaf corresponding with a 5% yield reduction of young radish were 22.4 and 349 mg/kg, respectively.

Characterization and Phenolic Compound Analysis of Cheorwon Onion by Lime-sulphur Mixture Treatment (석회유황합제 처리에 따른 철원 양파의 생육특성 및 페놀화합물 분석)

  • Kim, Y.B.;Lee, H.J.;Kim, D.H.;Koo, H.J.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • The aim of this study was to evaluate the change of phenolic compounds after lime-sulphur mixture treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is cultivated much in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. After the treatment with lime-sulphur mixture, the weight, width and plant height of the onion were not affected. In the phenolic compounds, caffeic acid, ferulic acid, rutin, p-coumaric acid and kaempferol except benzoic acid and quercetin were similar to or less than the control. Therefore, it was concluded that the treatment with lime-sulphur mixture had some effect on phenolic compound contents, benzoic acid and qurercetin.

Studies on uptake of lead by crops and reduction of it's damage -III. Effect of water management and lime application on Pb uptake in paddy rice (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -III. 수도(水稻)의 납 흡수이행(吸收移行)에 대(對)한 물관리(管理) 및 석회물질(石灰物質)의 효과)

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 1986
  • A pot experiment was conducted to find out the effects of water management and application of slaked lime and wollastonite on Pb uptake of rice in a Pb added soil. The soil was adjusted to 0, 150, 300 and 600 ppm of Pb concentration. The slake lime was applied at the equivalent amount of lime requirement with 150kg/10a adding and the wollastonite, 200kg/10a, respectively. The results obtained were as follows. 1. The lead contents in leaf stem and brown rice increased with increasing the soil Pb content and the ratio of Pb/(Ca+Mg) equivalent in soil but they showed no influence on yields. 2. The application of lime and wollastonite reduced Pb content in plant. 3. The lead content in plant was higher in intermittently irrigated treatment than in submersed irrigation. 4. The soil pH was increased in the order of lime, wollastonite and control. 5. $1N-NH_4$ OAC soluble Pb content in soil was higher in the submersed irrigation than in the intermittently irrigated and was higher in wollastonite application treatment than the slaked lime after harvesting.

  • PDF

Evaluation of Amending Materials to Reduce Soil Loss from Sloping Remediated Agricultural Land (급경사 복원 농경지 토양 유실 저감을 위한 개량제 효율 및 현장 적용성 평가)

  • Hwang, Wonjae;Park, Minseok;Hyun, Seunghun;Ji, Won hyun;Lee, Sang-Hwan
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.180-185
    • /
    • 2017
  • Restoration of min-impacted arable land is often performed through stabilization of trace elements by amendment treatment combined with (clean) soil covering on the surface. Recently, soil loss problem from sloping remediated agricultural lands has risen as an emerging concern. In this study, efficacy of aggregation formation was assessed by single and binary treatments of four potential amendments (bentonite, lime, organic matter, and steel slag) applied on three cover soils having different clay contents (9.4, 14.7, and 21.2% for A, B, and C soils respectively). In results of single treatments, 5% organic matter for A soil and 5% lime for B and C soils were found most effective for the aggregation formation compared to the respective controls (without amendments). Among nine binary treatments, 3% organic matter + 1% lime for A soil and 1% organic matter + 3% lime for both B and C soils led to the highest formation of aggregation (30.4, 25.0, and 36.5% for A, B, and C soils). For a site-application, the soil erodibility difference between the cover soils (0.045, 0.051, and 0.054 for A, B, and C soils, respectively) and the national average of arable land (0.032) was assumed to be compensated by amendment addition, which is equivalent to 29.1% aggregation formation. To achieve the aggregation goal, 5% lime for A and B soils and 3% lime for C soil were best in the consideration of benefit/cost, thereby effectively and economically reducing soil loss from sloping remediation site. Soil alkalinity induced by lime treatment was not considered in this work.

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

The Acaricidal Effects of Slaked Lime and Plant Extracts on Poultry Red Mites (소석회와 식물 추출물의 닭진드기에 대한 구충 효과)

  • Hong, Eui-Chul;Park, Ki-Tae;Kang, Bo-Seok;Kang, Hwan-Ku;Jeon, Jin-Joo;Kim, Hyun-Soo;Son, Jiseon;Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This study evaluated calcium hydroxide (slaked lime) and a combination of plant extracts ('natural product'; clove, cinnamon, and saponin; 1:1:1 ratio) as acaricidal control mechanisms for poultry red mites. Red mite susceptibility was evaluated after treatments with 10% slaked lime, 20% slaked lime, and 1% natural product. The duration of the acaricidal effect was also tested at 0, 10, 30, and 60 min after treatment using 20% slaked lime, 1% natural product, or a mixture of both. In the in vitro experiment, the slaked lime treatments were 73.2% (10% slaked lime) and 85.1% (20% slaked lime) effective on red mites. In acaricidal effect of control materials over times, with 20% slaked lime, the acaricidal effect decreased to 50.7% after 30 min, and 12.7% after 60 min (P<0.05). With 1% natural product, there was no acaricidal effect after 30 min (P<0.05). With 20% slaked lime +1% natural product, all of poultry red mites died until 30 min, and 92.9% after 60 min (P<0.05). On the farm, poultry red mites were observed that the number of poultry red mites increased 7,923 from 36 to 45 weeks, but then decreased to 483 after 20% slaked lime plus 1% natural product treatment. These results indicate that combining slaked lime and plant extracts effectively control poultry red mites.

Effect of Hot Water and Lime-Sulfur Mixture Treatment for Disinfection of Seeds for Organic Lettuce (유기농 상추 재배를 위한 온탕침지와 석회유황합제의 종자소독 효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Ko, Byeong-Gu;Kim, Ju;Park, Jong-Ho;Yoon, Ji-Young
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study was to investigate the effect of hot water treatment and pH corrected lime sulfur combination treatment on the fungicidal and bacterial disinfection effects and germination rate of organic lettuce seeds. Among the followers, Alternaria sp. was infected 53.3% and Aspergillus sp. and Cladosporium sp. Infected 14.5% and 5.4%, respectively. Bacteria were isolated only Pseudomonas sp., and infected with 16.5%. In order to investigate the effect of disinfection on the temperature of hot water (45℃, 50℃, 55℃ and 60℃). The seed germination rate sharply decreased with increasing temperature and treatment time. The germination effect and germination rate of the follower were highest when hot water treatment was carried out for 20 minutes in hot water at 50℃. In the case of combined treatment of 50℃ hot water for 10 min and 0.4% pH adjusted lime sulfur mixture, showed the highest sterilization effect and germination rate with 100% and 97.6%, respectively. The results of this study can contribute to the development of technology to sterilize not only seed surface but also fungi and bacteria inside of seed.