• Title/Summary/Keyword: Lignocellulose degradation

Search Result 28, Processing Time 0.023 seconds

Anaerobic Microbial Degradation of Lignocellulose and Lignolic Compounds (미생물에 의한 섬유질과 리그닌 유도체의 혐기적 분해)

  • 김소자;김욱한
    • The Korean Journal of Food And Nutrition
    • /
    • v.4 no.1
    • /
    • pp.99-107
    • /
    • 1991
  • Lignocellulose and lignolic compounds were absolutely given much weight In the biosphere, and their degradation was essential for continuous biological carbon circulation. Whereas aerobic cellulolytic microorganism dissolved the cellulose into their elements in the first stage, strict anaerobic cellulolytic microorganism's role was taken I increasing interest through the recent research. It was reviewed that anaerobic microbial degradation process of lignocellulose and its derivatives (cellulose, lignin, oligolignol and monoaromatic compound), and function of anaerobic microorganism on the. environmental ecology.

  • PDF

Solid State Fermentation of Phanerochaete chrysosporium for Degradation and Saccharification of Lignocellulose (Phanerochaete chrysosporium의 고상발효를 통한 리그노셀룰로오즈 분해 및 당화)

  • Utomo, Romualdus N.C.;Lee, Eun-Kwang;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • The lignocellulose that is a major component of spent coffee ground was degraded and saccharified. To implement the spent coffee, after several pre-treatments, inoculation of Phanerochaete chrysosporium and solid-state fermentation were conducted. The optimal temperature of the enzymes (lignin peroxidase, manganese peroxidase, xylanase, laccase, and cellulase) for degradation of lignocellulose by P. chrysosporium was found. We also measured the maximum activity of enzymes (lignin peroxidase 0.15 IU/mL, manganese peroxidase 0.90 IU/mL, laccase 0.11 IU/mL, cellulase 5.87 IU/mL, carboxymethyl cellulase 9.52 IU/mL, xylanase 1.16 IU/mL) used for the process. As a result, 4.73 mg/mL of reduced sugar was obtained and 61.02% of lignin was degraded by solid state fermentation of P. chrysosporium on spent coffee ground.

Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island

  • Oh, Han Na;Lee, Tae Kwon;Park, Jae Wan;No, Jee Hyun;Kim, Dockyu;Sul, Woo Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1670-1680
    • /
    • 2017
  • Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge on the decomposition of lignocellulose occurring in a natural environment is insufficient. We analyzed the 16S rRNA gene and metagenome to understand how the lignocellulose is decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using single molecules real-time sequencing revealed that the assembled contigs determined originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy)- and Protein families (Pfam)-based analysis showed that Proteobacteria was involved in degrading whole lignocellulose, and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrates. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass, and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.

Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity

  • Zhang, Dongdong;Wang, Yi;Zhang, Chunfang;Zheng, Dan;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.305-313
    • /
    • 2018
  • A microbial consortium, TMC7, was enriched for the degradation of natural lignocellulosic materials under high temperature. TMC7 degraded 79.7% of rice straw during 15 days of incubation at $65^{\circ}C$. Extracellular xylanase was effectively secreted and hemicellulose was mainly degraded in the early stage (first 3 days), whereas primary decomposition of cellulose was observed as of day 3. The optimal temperature and initial pH for extracellular xylanase activity and lignocellulose degradation were $65^{\circ}C$ and between 7.0 and 9.0, respectively. Extracellular xylanase activity was maintained above 80% and 85% over a wide range of temperature ($50-75^{\circ}C$) and pH values (6.0-11.0), respectively. Clostridium likely had the largest contribution to lignocellulose conversion in TMC7 initially, and Geobacillus, Aeribacillus, and Thermoanaerobacterium might have also been involved in the later phase. These results demonstrate the potential practical application of TMC7 for lignocellulosic biomass utilization in the biotechnological industry under hot and alkaline conditions.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

BIOLOGICAL PRETREATMENT OF HIGH ENERGY SORGHUM (하이에너지수수의 생물학적 전처리)

  • ;H.K
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Degradation of structural carbohydrates has been observed in samples of sweet sorghum inoculated with either Clostridium cellulolyticum or Bacteroides succinogenes. However, conditions under which these rellulolytic organisms can compete effectively with lactic acid bacteria have not yet been determined. Degradation of cellulose by B. succinogenes was found not to be inhibited by either glucose or succinate.

  • PDF

Lignocellulose Biodegradation and Interaction between Cellulose and Lignin under Sulfate Reducing Conditions (황산염 환원 조건에서 리그노셀룰로오스의 분해 및 리그닌과 셀룰로오스의 상호작용)

  • Ko, Jae-Jung;Kim, Seog-Ku;Shimizu, Yoshihisa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2007
  • In this study, the biodegradation test on lignocellulose under sulfate reducing conditions was carried out. In particular, the interaction between cellulose and lignin was investigated with various g-cellulose/g-lignin (C/L) ratios: 42.15, 4.59, 2.51, 1.14 and 0.7. It was shown that the rate of cellulose degradation decreased in proportion to the lignin content. Assuming first order degradation kinetics, the consequences of competitive inhibition were graphically shown for different C/L ratios. The relation between cellulose reduction rate and C/L ratio was expressed by logarithm function with a determination coefficient of 0.97. Lignocellulose reduction rate was also described as a logarithm function of C/L ratio showing a inhibition effect by lignin. In the mean time, the rate of lignin decomposition was higher at C/L ratio of 2.51 and 1.14 compared with C/L ratios of 4.59 and 0.7, indicating that excessive extra carbon source is not appropriate for lignin biodegradation.

  • PDF

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas;Waghmare, Pratima Pankajkumar;Gao, Liwei;Sun, Wan;Qin, Yuqi;Liu, Guodong;Qu, Yinbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.740-746
    • /
    • 2021
  • Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.

Isolation of a Lignolytic Bacterium for Degradation and Utilization of Lignocellulose (Lignocellulose의 분해 및 이용을 위한 Lignin 분해 세균의 분리)

  • 김용균;김한수;김근기;손홍주;이영근
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.392-398
    • /
    • 2002
  • 38 strains were isolated in order to utilize lignin degrading ability from soil and compost. A organism having high lignin degrading ability of the isolated strains determined morphologcal and biochemical characteristics. Enrichment technique yielded a lignin degrading bacterium characterized as Pseudomonas sp. LC-2. This strain was able to degrade lignin which are the true representatives of native lignin and transform lignin to a lot of aromatic compounds as HPLC analysis of culture. By polyacrylamide gel analysis, it was determined that peroxidase consisted of three enzymes, with only one, the lignin peroxidase having high activity.

Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi (담자균류 목질섬유소 분해효소의 특성과 산업적 이용)

  • Lim, Sun-Hwa;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • Basidiomycetous fungi are one of the most potent biodegraders because many of its species grow on dead wood or litter, in environments rich in lignocellulose. For the degradation of lignocellulose, basidiomycetes utilize their lignocellulytic enzymes, which typically include laccase (EC 1.10.3.2), lignin peroxidase (EC 1.11.1.14), xylanase (EC 3.2.1.8), and cellulase (EC 3.2.1.4). In recent years, the practical applications of basidiomycetes have ranged from the textile to the pulp and paper industries, and from food applications to bioremediation processes and industrial enzymatic saccharification of biomass. Recently, spent mushroom substrates of edible mushrooms have been used as sources of bulk enzymes to decolorize synthetic dyes in textile wastewater. In this review, the occurrence, mode of action, general properties, and production of lignocellulytic enzymes from mushroom species will be discussed. We will also discuss the potential applications of these enzymes.