• Title/Summary/Keyword: Lignin biochar

Search Result 6, Processing Time 0.022 seconds

Effect of Lignin Biochar Application on Kimchi Cabbage Cultivation (리그닌 바이오차가 배추 재배에 미치는 효과)

  • Han-Na Cho;Jae-Hyuk Park;Jin-Ju Yun;Seung-Gyu Lee;So-Hui Kim;Ju-Sik Cho;Se-Won Kang
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.353-357
    • /
    • 2023
  • This study evaluated the effect of lignin biochar on Kimchi cabbage cultivation in an upland field. Each of the inorganic fertilizers (IF, applied at 32-7.8-19.8 kg/10a=N-P-K), lignin biochar (LBC, applied at 1,000 kg/10a), improved LBC (LBC+N, applied at 1,000 kg/10a), and LBC+IF treatments areas were separated by a control (Cn) treatment area. The fresh weight of Kimchi cabbage increased in the order LBC+N > IF > LBC+IF > Cn > LBC treatments, and the length and width of the leaf were ranged from 20.8-25.7 and 13.7-15.8 cm/plant in all treatments. After Kimchi cabbage harvesting in the LBC+N treatment, soil quality improved bulk density, pH, OM, TN, and Av-P2O5 than those other treatments. In addition, the total N2O flux in LBC+N LBC+N was lower than in IF treatments. Therefore, improved lignin biochar application effectively improves Kimchi cabbage cultivation and can benefit the agricultural environment.

The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water (리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용)

  • Kim Eunji;Kim Naeun;Park Juyeong;Lee Heuiyun;Yoon Kwangsuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

Comparision of Biochar Properties From Biomass produced by Slow Pyrolysis (저속열분해를 통한 바이오매스 부산물의 바이오촤 특성 비교 분석)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook;Gang, Ki Seop;Yang, Won;Jung, Jin-Ho;Hyun, Seunghun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.69-72
    • /
    • 2013
  • This study investigates the characteristics of biochar by slow pyrolysis at $500^{\circ}C$ for various biomass residues. Six biomass materials were tested: Tree bark, Tree stem, bagasse, cocopeat, paddy straw and palm kernel shell. In the biochar yield, the effect of ash in the raw biomass was significant for paddy straw. Excluding the ash content, the timber bark, bagasse and paddy straw had a similar biochar yield of 26-29 wt.%. Tree stem and bagasse had well developed pores in a wide size range and large surface area over $200m^2/g$. Cocopeat and PKS has significantly higher biochar yield due to the increased content of lignin, but the development of intra-particle pores and microscopic surface area was very poor. The elemental composition, pH and other properties of the biochar samples were also compared.

  • PDF

Characteristics of Biochar Derived from Lignocellulosic Biomass and Effect of Adsorption of Methylene Blue (목질계 바이오매스 유래 바이오차의 특성과 메틸렌블루 흡착 효과)

  • Yoon-Jung Shin;Dae-Yeon Song;Eun-Ju Lee;Jae-Won Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, biochar was produced from biomass waste, and its methylene blue adsorption capacity was evaluated. The major components of the biomass were cellulose, hemicellulose, and lignin. Ash content was high in waste wood. Carbonization yield decreased as carbonization temperature increased, as did hydrogen and oxygen content, but carbon content increased. Increased carbonization temperature also increased the specific surface area and micropores of biochar. At 600 ℃, biochar had the highest specific surface area (216.15~301.80 m2 /g). As a result of methylene blue adsorption on biochar carbonized at 600 ℃, oak, waste wood, and pruned apple tree branches fit the Freundlich model, while pruned peach tree branches fit the Langmuir model. In the adsorption kinetics of methylene blue on biochar, oak and pruned peach tree branches fit a pseudo-first-order model, while waste wood and pruned apple tree branches fit a pseudo-second-order model.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature (반응온도에 따른 팜 부산물(empty fruit bunch)의 열화학적 분해 특성에 관한 연구)

  • Lee, Jae Hoon;Moon, Jae Gwan;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.350-359
    • /
    • 2016
  • We performed fast pyrolysis of empty fruit bunch (EFB) in the range of temperature from $400{\sim}550^{\circ}C$ and 1.3 s of residence time. The effect of temperature on the yields and physicochemical properties of pyrolytic products were also studied. Elemental and component analysis of EFB showed that the large amount of potassium (ca. 8400 ppm) presents in the feedstock. Thermogravimetric analysis suggested that the potassium in the feedstock catalyzed degradation of cellulose. The yield of bio-oil increased with increasing temperature in the range of temperature from $400{\sim}500^{\circ}C$, while that of gas and biochar decreased and showed monotonous change each with increasing temperature. When the EFB was pyrolyzed at $550^{\circ}C$, the yield of bio-oil and char decreased while that of gas increased. Water content of the bio-oils obtained at different temperatures was 20~30% and their total acid number were less than 100 mg KOH/g oil. Viscosity of the bio-oils was 11 cSt (centistoke), and heating value varied from 15 to 17 MJ/kg. Using GC/MS analysis, 27 chemical compounds which were classified into two groups (cellulose-derived and lignin-derived) were identified. Remarkably the concentration of phenol was approximately 25% based on entire chemical compounds.