• Title/Summary/Keyword: Lightweight filler

Search Result 23, Processing Time 0.022 seconds

Preparation and Characterization of Lightweight Fillers and Inorganic Flame Retardants are Added Polyurethane Composite Foam (경량 충진제 및 무기계 난연제 첨가 polyurethane 복합발포체 제조 및 특성)

  • Kang, Dong-Rak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.955-960
    • /
    • 2012
  • In this study, pure Polyurethane and commonly used flame retardants $Al(OH)_3$ and $Mg(OH)_2$, the add-in sample and Cloisite Na+, Cloisite 15A added sample of flammability and mechanical properties are compared. Sodium silicate and a mixture of polyurethane that the lightweight filler Vermiculite, Perlite addition of flame retardant and mechanical properties of the sample was confirmed. As a result, the flame retardant additive in the Vermiculite and Perlite in a flame-retardant grade sample except sample were identified. Tensile strength is degrade accord to the filler amount. But, Sodium silicate in the case of the sample add-in, other than confirmed that the sample strength increases.

Properties of SBR Compound using Silica-graphite Dual Phase Filler (실리카-그라파이트 이원 충진제를 이용한 SBR 컴파운드의 성질)

  • Shin, Ji Hang;Shanmugharaj, A.M.;Lee, Pyoung Chan;Jeoung, Sun Kyung;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Carbon coating on silica particles is done by grafting expanded graphite on the silica aggregates. Successful coating of carbon is corroborated using FT-IR, TGA, XPS and TEM. Crystalline nature of coated graphite is corroborated using XRD. Influence of carbon coated silica particles on rheometric and mechanical properties of SBR composites are investigated. Carbon coated silica particles showed significant improvement in rheometric and mechanical properties, when compared to pristine silica filled system corroborating higher polymer-filler adhesion. This fact was further supported by bound rubber content and equilibrium swelling ratios of unvulcanized and vulcanized SBR composites.

Development of Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (하이브리드 섬유로 보강한 고강도 경량 시멘트 복합체의 개발)

  • Bang, Jin-Wook;Kim, Jung-Su;Lee, Bang-Yeon;Jang, Young-Il;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2010
  • The purpose of this paper is to develop a Hybrid Fiber-reinforced High Strength Lightweight Cementitious Composite (HFSLCC) incorporated with lightweight filler and hybrid fibers for lightness and high ductility. Optimal ingredients and mixture proportion were determined on the basis of the micromechanical analysis and the steady-state cracking theory considering the fracture characteristics of matrix and the interfacial properties between fibers and matrix. Then 4 mixture proportions were determined according to the type and amount of fibers and the experiment was performed to evaluate the mechanical performance of those. The HFSLCC showed 3% of tensile strain, 4.2MPa of ultimate tensile stress, 57MPa of compressive strength and $1,660kg/m^3$ of bulk density. The mechanical performance of HFSLCC incorporated with PVA fibers of 1.0 Vol.% and PE fibers of 0.5 Vol.% is similar to those of the HFSLCC incorporated with fibers of 2.0 Vol.%.

Experimental Study on the Heat Shielding Performance of Lightweight Foamed Concrete Using EPS beads. (EPS 비드를 사용한 경량기포콘크리트의 차열성능의 실험적 연구)

  • Hong, Snag-Hun;Song, Seung-Li;You, Nam-Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.21-22
    • /
    • 2018
  • Foamed concrete is a porous concrete that is cured by mixing bubbles into cement slurry. It is lighter than ordinary concrete and is characterized by higher insulation. Lightweight foamed concerte is mainly used as a sandwich panel in Korea, and is also used as a refractory filler in fireproof safes. Studies on lightwight foamed concrete have been carried out on strength,density and thermal conductivity. However, it is confirmed that the research on the fire resistance performance is very limited. Based on this study, fire resistance of lightweight foamed concrete using expanded polystyrene beads is investigated.

  • PDF

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator (하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.3-9
    • /
    • 2008
  • The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash (하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The preparation of porous lightweight materials as well as the measurement of physical properties has been performed by using SSA(sewage sludge ash) as the raw material. For this aim, two types of lightweight filler, that is, perlite and silica sphere were employed respectively and bentonite was also used as an inorganic binder. The properties of lightweight specimen calcined at 1,000 were measured in terms of density, compressive strength, thermal conductivity and sound absorption to examine the effect of material composition as well as the preparation condition on the properties of lightweight material. As a result, the density of specimen prepared with perlite was ranged from 1.23 to $1.37g/cm^3$ and the compressive strength was ranged from 242.3 to $370.5kg/cm^2$. In case of specimen prepared with silica sphere, it was found that the compressive strength was less than $100kg/cm^2$ even though density was lower than that of specimen with perlite. As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to $0.5W/m^{\circ}K$ depending on material composition so that the insulation effect was superior to conventional concrete.

A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive (전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구)

  • Cho, Hong;Jeoung, Sun-Kyoung;Kim, Byeong-Woo
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.