Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.8
/
pp.1133-1138
/
2018
Lightweight Encryption Algorithm (LEA) is one of the most promising lightweight block cipher algorithm due to its high efficiency and security level. There are many works on the efficient LEA implementation. However, many works missed the secure application services where the IoT platforms perform secure communications between heterogeneous IoT platforms. In order to establish the secure communication channel between them, the encryption should be performed in the on-the-fly method. In this paper, we present the LEA implementation performing the on-the-fly method over the ARM Cortex-M3 processors. The general purpose registers are fully utilized to retain the required variables for the key scheduling and encryption operations and the rotation operation is optimized away by using the barrel-shifter technique. Since the on-the-fly method does not store the round keys, the RAM requirements are minimized. The implementation is evaluated over the ARM Cortex-M3 processor and it only requires 34 cycles/byte.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.10
/
pp.1929-1934
/
2017
Lightweight block cipher (Lightweight Encryption Algorithm, LEA), is the most promising block cipher algorithm due to its efficient implementation feature and high security level. The LEA block cipher is widely used in real-field applications and there are many efforts to enhance the performance of LEA in terms of execution timing to achieve the high availability under any circumstances. In this paper, we enhance the performance of LEA block cipher, particularly on ARMv8 processors. The LEA implementation is optimized by using new SIMD instructions namely NEON engine and 24 LEA encryption operations are simultaneously performed in parallel way. In order to reduce the number of memory access, we utilized the all NEON registers to retain the intermediate results. Finally, we evaluated the performance of the LEA implementation, and the proposed implementations on Apple A7 and Apple A9 achieved the 2.4 cycles/byte and 2.2 cycles/byte, respectively.
This paper describes hardware implementation of the encryption block of the '128 bit block cipher LEA' among various lightweight encryption algorithms for IoT (Internet of Things) security. Round function blocks and key-schedule blocks are designed by parallel circuits for high throughput. The encryption blocks support secret-key of 128 bits, and are designed by FSM method and 24/n stage(n=1, 2, 3, 4, 8, 12) pipeline methods. The LEA-128 encryption blocks are modeled using Verilog-HDL and implemented on FPGA, and according to the synthesis results, minimum area and maximum throughput are provided.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39B
no.12
/
pp.822-830
/
2014
Recently, A Security service in Internet environments has been more important and the use of SSL & TLS is increasing for the personel homepage as well as administrative institutions. Also, IETF suggests using DTLS, which can provide a security service to constrained devices with lower CPU power and limited memory space under IoT environments. In this paper, we implement LEA(Lightweight Encryption Algorithm) algorithm and apply it to OpenSSL. The implemented algorithm is compared with other symmetric encryption algorithms such as AES etc, and it shows the superior performance in calculation speed.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.9
/
pp.397-406
/
2017
In case of using the existing encrypted algorithm for massive data encryption service under the cloud environment, the problem that requires much time in data encryption come to the fore. To make up for this weakness, a partial encryption method is used generally. However, the existing partial encryption method has a disadvantage that the encrypted data can be inferred due to the remaining area that is not encrypted. This study proposes a partial encryption method of increasing the encryption speed and complying with the security standard in order to solve this demerit. The proposed method consists of 3 processes such as header formation, partial encryption and block shuffle. In step 1 Header formation process, header data necessary for the algorithm are generated. In step 2 Partial encryption process, a part of data is encrypted, using LEA (Lightweight Encryption Algorithm), and all data are transformed with XOR of data in the unencrypted part and the block generated in the encryption process. In step 3 Block shuffle process, the blocks are mixed, using the shuffle data stored with the random arrangement form in the header to carry out encryption by transforming the data into an unrecognizable form. As a result of the implementation of the proposed method, applying it to a mobile device, all the encrypted data were transformed into an unrecognizable form, so the data could not be inferred, and the data could not be restored without the encryption key. It was confirmed that the proposed method could make prompt treatment possible in encrypting mass data since the encryption speed is improved by approximately 273% or so compared to LEA which is Lightweight Encryption Algorithm.
Journal of information and communication convergence engineering
/
v.12
no.4
/
pp.252-256
/
2014
Traditional block cipher Advanced Encryption Standard (AES) is widely used in the field of network security, but it has high overhead on each operation. In the 15th international workshop on information security applications, a novel lightweight and low-power encryption algorithm named low-power encryption algorithm (LEA) was released. This algorithm has certain useful features for hardware and software implementations, that is, simple addition, rotation, exclusive-or (ARX) operations, non-Substitute-BOX architecture, and 32-bit word size. In this study, we further improve the LEA encryptions for cloud computing. The Web-based implementations include JavaScript and assembly codes. Unlike normal implementation, JavaScript does not support unsigned integer and rotation operations; therefore, we present several techniques for resolving this issue. Furthermore, the proposed method yields a speed-optimized result and shows high performance enhancements. Each implementation is tested using various Web browsers, such as Google Chrome, Internet Explorer, and Mozilla Firefox, and on various devices including personal computers and mobile devices. These results extend the use of LEA encryption to any circumstance.
Park, Jin-Hak;Kim, Tae-Jong;An, Hyun-Jin;Won, Yoo-Seung;Han, Dong-Guk
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.2
/
pp.449-456
/
2015
Recently, information security of IoT(Internet of Things) have been increasing to interest and many research groups have been studying for cryptographic algorithms, which are suitable for IoT environment. LEA(Lightweight Encryption Algorithm) developed by NSRI(National Security Research Institute) is commensurate with IoT. In this paper, we propose two first-order Correlation Power Analysis(CPA) attacks for LEA and experimentally demonstrate our attacks. Additionally, we suggest the mask countermeasure for LEA defeating our attacks. In order to estimate efficiency for the masked LEA, its operation cost is compared to operation time of masked AES.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.359-362
/
2014
With recent growing of application service, servers are required to sustain great amount of data and to handle them quickly: besides, data must be processed securely. The main security algorithm used in security services of server is AES(Advanced Encryption Standard - 2001 published by NIST), which is widely accepted in the world market for superiority of performance. In Korea, NSRI(National Security Research Institute) has developed ARIA(Academy, Research Institute, Agency) algorithm in 2004 and LEA(Lightweight Encryption Algorithm) algorithm in 2012. In this paper, we show advantage of LEA by comparing performance with AES and ARIA in various servers.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.12
/
pp.2333-2340
/
2016
A LEA (Lightweight Encryption Algorithm) crypto-processor was designed, which supports three master key lengths of 128/ 192/256-bit, ECB and CTR modes of operation. To achieve high throughput rate, the round transformation block was designed with 128 bits datapath and a pipelined structure of 16 stages. Encryption/decryption is carried out through 12/14/16 pipelined stages according to the master key length, and each pipelined stage performs round transformation twice. The key scheduler block was optimized to share hardware resources that are required for encryption, decryption, and three master key lengths. The round keys generated by key scheduler are stored in 32 round key registers, and are repeatedly used in round transformation until master key is updated. The pipelined LEA processor was verified by FPGA implementation, and the estimated performance is about 8.3 Gbps at the maximum clock frequency of 130 MHz.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.7
/
pp.1276-1284
/
2017
Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.