• Title/Summary/Keyword: Lightweight Frame

Search Result 90, Processing Time 0.023 seconds

Density and Water Absorption Ratio Property of the Magnesium Oxide Matrix According to Wood flour Addition Ratio (목분의 첨가량에 따른 산화마그네슘 경화체의 밀도 및 흡수율 특성)

  • Jung, Byeong-Yeol;Kim, Heon-Tae;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.236-237
    • /
    • 2014
  • Recently, it changes to the frame construction in the wall type structure for the life span improvement of the apartment house of our country. The execution of the light panel increased while the execution of the frame construction increased. Therefore, the density and absorption ratio of the magnesium oxide matrix according to the wood flour amount of addition ratio property try to be analyze for the lightweight of the surface material of the light panel. The test result, the density has been declined as the addition ratio increase of the wood flour. In the case of the water absorption ratio, water absorption ratio has been increased as addition ratio increase of wood flour. However, wood flour addition ratio 15% determined the most appropriate when considering the density and water absorption ratio.

  • PDF

Numerical analysis of reaction forces in blast resistant gates

  • Al-Rifaie, Hasan;Sumelka, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.347-359
    • /
    • 2017
  • Blast resistant gates are required to be lightweight and able to mitigate extreme loading effect. This may be achieved through innovative design of a gate and its supporting frame. The first is well covered in literature while the latter is often overlooked. The design of supporting frame depends mainly on the boundary conditions and corresponding reaction forces. The later states the novelty and the aim of this paper, namely, the analysis of reaction forces in supporting structure of rectangular steel gates subjected to "far-field explosions". Flat steel plate was used as simplified gate structure, since the focus was on reaction forces rather than behaviour of gate itself. The analyses include both static and dynamic cases using analytical and numerical methods to emphasize the difference between both approaches, and provide some practical hints for engineers. The comprehensive study of reaction forces presented here, cover four different boundary conditions and three length to width ratios. Moreover, the effect of explosive charge and stand-off distance on reaction forces was also covered. The analyses presented can be used for a future design of a possible "blast absorbing supporting frame" which will increase the absorbing properties of the gate. This in return, may lead to lighter and more operational blast resistant gates.

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

Economics on Structural Floor Systems of Super Tall Buildings

  • Shin Sung-Woo;Ahn Jong-Moon;Choi Myung-Shin;Seo Dae-Won;Kim Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.609-613
    • /
    • 2004
  • An economic analysis is one of the most dominant factors to determine the project feasibility of super tall building. In economic considerations, it is very important toadopt optimum structural floor systems because these are dependent on both the cost and the duration of construction. The economics affected by structural floor systems are more distinct athigher story. As the story increases, the construction cost of floor system. is accumulated linearly, while the cost of lateral resisting system is increased geometrically. The purpose of this study is to investigate the economical effects of super tall buildings through application of optimum structural floor systems. Three types of structural systems(RC beam-column frame, RC flat plate frame, and Steel frame) of super tall buildings having 50-stories are considered in this study and compared to RC flat plate slab with other systems. Analytical result shows that RC flat plate slab using lightweight concrete ismost effective in both the cost and the duration of construction.

  • PDF

A Study on CFRTP Aircraft Frame Stiffening by OOA Process (OOA 공정을 통한 CFRTP 항공기 Frame 보강재 성형에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Choi, Hyun-Seok;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2017
  • Carbon fiber reinforced plastic (CFRP) is applied as structural material. CFRP is excellent in plane strength / stiffness and don't haves rust. Lightweight, rigid and robust at the same time as transportation material. Aluminum alloy and reinforcement material The application is increasing rapidly. In this study, the prototype of a semi - Monocoque structure frame, Longeron, Stringer, Skin of the aircraft, restraining the rigidity Clips of the aircraft was designated as the target product and the experiment was conducted. ln the experiment, (1) For CFRTP 3 points, data on heating, transfer, and cooling were measured using Thermo Couple, and optimum temperature required for flexible state was obtained. Heating was performed at a temperature 15% higher than the provided temperature. (2) By using a pneumatic press during molding, by dividing LH, center and RH according to the cooling time, thickness parameter of the target product due to the load is measured, and thickness control and time-deviations were analyzed and cross sections were observed with a low magnification microscope.

Seismic control performance and experimental study of multiple pounding tuned rolling mass damper

  • Peiran Fan;Shujin Li;Ling Mao
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.247-258
    • /
    • 2023
  • Multiple pounding tuned rolling mass damper (MPTRMD) distributed in the cavity of voided slabs is proposed to passively control multi-story frame structures, which disperses the mass of the oscillator to multiple dampers so that the control device can be miniaturized without affecting the vibration control performance. The mechanism and the differential motion equations of the MPTRMD-controlled multi-degree-of-freedom system are derived based on the Lagrange principle. Afterward, this advanced RMD is applied to a simplified 20-floor steel frame to evaluate the seismic control performance in the numerical analysis. A four-storey frame structure equipped with MPTRMD is then taken for a shaking table test to verify its effectiveness of control performance. The pounding mechanism has been detailed studied numerically and experimentally as well. The numerical and experimental results show that the proposed damper is practically promising not only for its prominent control performance but also for its lightweight and space-saving. Additionally, the pounding mechanism influenced by the variable impact parameters exhibits a balance between the two effects of motional limitations and energy dissipation.

Video Integrity Checking Scheme by Using Merkle Tree (머클트리를 활용한 영상무결성 검사 기법 )

  • Yun-Hee Kang;Eun-Young CHANG;Taeun Kwonk
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, digital contents including video and sound are created in various fields, transmitted to the cloud through the Internet, and then stored and used. In order to utilize digital content, it is essential to verify data integrity, and it is necessary to ensure network bandwidth efficiency of verified data. This paper describes the design and implementation of a server that maintains, manages, and provides data for verifying the integrity of video data. The server receives and stores image data from Logger, a module that acquires image data, and performs a function of providing data necessary for verification to Verifier, a module that verifies image data. Then, a lightweight Merkle tree is constructed using the hash value. The light-weight Merkle tree can quickly detect integrity violations without comparing individual hash values of the corresponding video frame changes of the video frame indexes of the two versions. A lightweight Merkle tree is constructed by generating a hash value of digital content so as to have network bandwidth efficiency, and the result of performing proof of integrity verification is presented.

A Study on the Hydraulic and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2061-2066
    • /
    • 2007
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the hydraulic and heat transfer characteristics for the Wire-woven Bulk Kagome(WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen have been experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK are compared with other heat dissipation media. It was shown that heat transfer depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and other materials suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

  • PDF

A Study on the Fluid Flow and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome Truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the fluid flow and heat transfer characteristics for the Wire-woven Bulk Kagome (WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen was experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK were compared with other heat dissipation media. It was shown that heat transfer characteristics depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and others suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

Shear resistance of stud connectors in high strength concrete

  • Lee, Young Hak;Kim, Min Sook;Kim, Heecheul;Kim, Dae-Jin
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.647-661
    • /
    • 2014
  • The use of steel-concrete composite members has been significantly increased as they have the advantages of the reduction of cross sectional areas, excellent ductility against earthquake loadings and a longer life span than typical steel frame members. The increased use of composite members requires an intensive study on the shear resistance evaluation of stud connectors in high strength concrete. However, the applicability of currently available standards is limited to composite members with normal and lightweight strength concrete. In this paper, push-out tests were performed on 24 specimens to investigate the structural behavior and shear resistance of stud connectors in high strength concrete. Test parameters include the existence of shear studs, height to diameter ratio of a shear stud, its diameter and concrete cover thickness. A shear resistance equation of stud connectors is proposed through a linear regression analysis based on the test results. Its accuracy is compared with those of existing shear resistance equations for studs in normal and lightweight concrete.